PostgreSql查询优化之根据执行计划优化SQL

1、执行计划路径选择

         postgresql查询规划过程中,查询请求的不同执行方案是通过建立不同的路径来表达的,在生成许多符合条件的路径之后,要从中选择出代价最小的路径基于成本运算,把它转化为一个计划,传递给执行器执行,规划器的核心工作就是生成多条路径,然后从中找出最优的那一条。

1.1代价评估

         评估路径优劣的依据是用系统表pg_statistic中的统计信息估算出来的不同路径的代价(cost),PostgreSQL估计计划成本的方式:基于统计信息估计计划中各个节点的成本。PostgreSQL会分析各个表来获取一个统计信息样本(这个操作通常是由autovacuum这个守护进程周期性的执行analyze,来收集这些统计信息,然后保存到pg_statistic和pg_class里面)。

1.2用于估算代价的参数postgresql.conf

# - Planner Cost Constants -

#seq_page_cost = 1.0            # measured on an arbitrary scale  顺序磁盘扫描时单个页面的开销

#random_page_cost = 4.0         # same scale as above   随机磁盘访问时单页面的读取开销

#cpu_tuple_cost = 0.01          # same scale as above cpu处理每一行的开销

#cpu_index_tuple_cost = 0.005       # same scale as above cpu处理每个索引行的开销

#cpu_operator_cost = 0.0025     # same scale as above cpu处理每个运算符或者函数调用的开销

#parallel_tuple_cost = 0.1      # same scale as above 计算并行处理的成本,如果成本高于非并行,则不会开启并行处理。

#parallel_setup_cost = 1000.0   # same scale as above

#min_parallel_relation_size = 8MB

#effective_cache_size = 4GB 再一次索引扫描中可用的文件系统内核缓冲区有效大小

 

              也可以使用 show all的方式查看

1.3 路径的选择

         

--查看表信息

highgo=# \d t_jcxxgl_tjaj

               Table "db_jcxx.t_jcxxgl_tjaj"

    Column    |              Type              | Modifiers --------------+--------------------------------+-----------

 c_bh        | character(32)                  | not null

 c_xzdm       | character varying(300)         |

 c_jgid       | character(32)                  |

 c_ajbm       | character(22)                  |

...

Indexes:

    "t_jcxxgl_tjaj_pkey" PRIMARY KEY, btree (c_bh)

    "idx_ttjaj_cah" btree (c_ah)

    "idx_ttjaj_dslrq" btree (d_slrq)

       首先更新统计信息vacuum analyze t_jcxxgl_tjaj,许多时候可能因为统计信息的不准确导致了不正常的执行计划--执行计划

--执行计划,全表扫描

   

highgo=# explain (analyze,verbose,costs,buffers,timing)select c_bh,c_xzdm,c_jgid,c_ajbm from t_jcxxgl_tjaj where d_slrq >='2018-03-18';

                                                   QUERY PLAN                                               ------------------------------------------------------------------------------------------------------------

 Seq Scan on db_jcxx.t_jcxxgl_tjaj  (cost=0.00..9.76 rows=3 width=96) (actual time=1.031..1.055 rows=3 loops

=1)

   Output: c_bh, c_xzdm, c_jgid, c_ajbm

   Filter: (t_jcxxgl_tjaj.d_slrq >= '2018-03-18'::date)

   Rows Removed by Filter: 138

   Buffers: shared hit=8

 Planning time: 6.579 ms

 Execution time: 1.163 ms

(7 rows)

如上,d_slrq是有索引的,但是执行计划中并没有走索引,为什么呢?我们继续往下看。

--执行计划,关闭全表扫描

highgo=# set session enable_seqscan = off;

SET

highgo=# explain (analyze,verbose,costs,buffers,timing)select c_bh,c_xzdm,c_jgid,c_ajbm from t_jcxxgl_tjaj where d_slrq >='2018-03-18';

                                                               QUERY PLAN                                                               ------------------------------------------------------------------------------------------------------------

 Index Scan using idx_ttjaj_dslrq on db_jcxx.t_jcxxgl_tjaj  (cost=0.14..13.90 rows=3 width=96) (actual time=0.012..0.026 rows=3 loops=1)

   Output: c_bh, c_xzdm, c_jgid, c_ajbm

   Index Cond: (t_jcxxgl_tjaj.d_slrq >= '2018-03-18'::date)

   Buffers: shared hit=4

 Planning time: 0.309 ms

 Execution time: 0.063 ms

(6 rows)

     d_slrq上面有btree索引,但是查看执行计划并没有走索引,这是为什么呢?

代价计算

      一个路径的估算由三部分组成:启动代价(startup cost),总代价(totalcost),执行结果的排序方式(pathkeys)

代价估算公式

      总代价=启动代价+I/O代价+CPU代价(cost=S+P+W*T)

            P:执行时要访问的页面数,反应磁盘的I/O次数

            T:表示在执行时所要访问的元组数,反映了cpu开销

            W:表示磁盘I/O代价和CPU开销建的权重因子

统计信息

        统计信息的其中一部分是每个表和索引中项的总数,以及每个表和索引占用的磁盘块数。这些信息保存在pg_class表的reltuples和relpages列中。我们可以这样查询相关信息

​--查看统计信息

     

highgo=# select relpages,reltuples from pg_class where relname ='t_jcxxgl_tjaj';

 relpages | reltuples ----------+-----------

        8 |       141

(1 row)

      total_cost = 1(seq_page_cost)*8(磁盘总页数)+0.01(cpu_tuple_cost)*141(表的总记录数)+0.0025(cpu_operation_cost)*141(表的总记录数)=9.7625

可以看到走索引的cost=13.90全表扫描cost=9.76要大所以上面没有关闭全表扫描的时候,根据成本代价,执行计划走的全表扫描。在表较小的情况下,全表扫描比索引扫描更有效, index scan 至少要发生两次I/O,一次是读取索引块,一次是读取数据块。

2、一个SQL优化实例

2.1慢SQL

     

select c_ajbh, c_ah, c_cbfy, c_cbrxm, d_larq, d_jarq, n_dbjg, c_yqly from db_zxzhld.t_zhld_db dbxx join db_zxzhld.t_zhld_ajdbxx dbaj     on dbxx.c_bh = dbaj.c_dbbh where dbxx.n_valid=1 and dbxx.n_state in (1,2,3) and dbxx.c_dbztbh='1003' and dbaj.c_zblx='1003' and dbaj.c_dbfy='0' and dbaj.c_gy = '2550'     and c_ajbh in (select distinct c_ajbh from db_zxzhld.t_zhld_zbajxx where n_dbzt = 1 and c_zblx = '1003' and c_gy = '2550' )     order by d_larq asc, c_ajbh asc limit 15 offset 0;

慢sql耗时:7s

       先过下这个sql是干什么的、首先dbxx和dbaj的一个join连接然后dbaj.c_ajbh要包含在zbaj表里面,做了个排序,取了15条记录、大概就这样。

       Sql有个缺点就是我不知道查询的字段是从那个表里面取的、建议加上表别名.字段。

查看该sql的表的数据量

         t_zhld_db :1311

         t_zhld_ajdbxx :341296

        t_zhld_zbajxx :1027619        

执行计划:

   

01 Limit  (cost=36328.67..36328.68 rows=1 width=107) (actual time=88957.677..88957.729 rows=15 loops=1)

02   ->  Sort  (cost=36328.67..36328.68 rows=1 width=107) (actual time=88957.653..88957.672 rows=15 loops=1)

03         Sort Key: dbaj.d_larq, dbaj.c_ajbh

04         Sort Method: top-N heapsort  Memory: 27kB

05         ->  Nested Loop Semi Join  (cost=17099.76..36328.66 rows=1 width=107) (actual time=277.794..88932.662 rows=8605 loops=1)

06               Join Filter: ((dbaj.c_ajbh)::text = (t_zhld_zbajxx.c_ajbh)::text)

07               Rows Removed by Join Filter: 37018710

08               ->  Nested Loop  (cost=0.00..19200.59 rows=1 width=107) (actual time=199.141..601.845 rows=8605 loops=1)

09                     Join Filter: (dbxx.c_bh = dbaj.c_dbbh)

10                     Rows Removed by Join Filter: 111865

11                     ->  Seq Scan on t_zhld_ajdbxx dbaj  (cost=0.00..19117.70 rows=219 width=140) (actual time=198.871..266.182 rows=8605 loops=1)

12                           Filter: ((n_valid = 1) AND ((c_zblx)::text = '1003'::text) AND ((c_dbfy)::text = '0'::text) AND ((c_gy)::text = '2550'::text))

13                           Rows Removed by Filter: 332691

14                     ->  Materialize  (cost=0.00..66.48 rows=5 width=33) (actual time=0.001..0.017 rows=14 loops=8605)

15                           ->  Seq Scan on t_zhld_db dbxx  (cost=0.00..66.45 rows=5 width=33) (actual time=0.044..0.722 rows=14 loops=1)

16                                 Filter: ((n_valid = 1) AND ((c_dbztbh)::text = '1003'::text) AND (n_state = ANY ('{1,2,3}'::integer[])))

17                                 Rows Removed by Filter: 1297

18               ->  Materialize  (cost=17099.76..17117.46 rows=708 width=32) (actual time=0.006..4.890 rows=4303 loops=8605)

19                     ->  HashAggregate  (cost=17099.76..17106.84 rows=708 width=32) (actual time=44.011..54.924 rows=8605 loops=1)

20                           Group Key: t_zhld_zbajxx.c_ajbh

21                           ->  Bitmap Heap Scan on t_zhld_zbajxx  (cost=163.36..17097.99 rows=708 width=32) (actual time=5.218..30.278 rows=8605 loops=1)

22                                 Recheck Cond: ((n_dbzt = 1) AND ((c_zblx)::text = '1003'::text))

23                                 Filter: ((c_gy)::text = '2550'::text)

24                                 Rows Removed by Filter: 21849

25                                 Heap Blocks: exact=960

26                                 ->  Bitmap Index Scan on i_tzhldzbajxx_zblx_dbzt  (cost=0.00..163.19 rows=5876 width=0) (actual time=5.011..5.011 rows=30458 loops=1)

27                                       Index Cond: ((n_dbzt = 1) AND ((c_zblx)::text = '1003'::text))

28 Planning time: 1.258 ms

29 Execution time: 88958.029 ms

 

执行计划解读:

     1:第27->21行,通过索引i_tzhldzbajxx_zblx_dbzt过滤表t_zhld_zbajxx的数据,然后根据过滤条件(c_gy)::text = '2550'::text过滤最终返回8605条数据

     2:第17->15行,根据条件过滤t_zhld_db表的数据,最终返回了14条数据

     3:第20->19行,对表t_zhld_zbajxx做group by的操作

     4:第13->11行,全表扫描t_zhld_ajdbxx 最终返回了8605条数据

     5:第08行,根据t_zhld_ajdbxx返回的8605条结果集作为驱动表和t_zhld_db的结果集(14条)做嵌套循环,t_zhld_db的结果集被循环了8605次。然后过滤掉了其中的111865条记录,那么最终将得到(8605*14-111865) = 8605

     6:第07->05行,根据第08和18行返回的结果集最终做了Nested Loop Semi Join,第18行的4303条结果集被循环了8605次,(4303*8605-37018710)=8605

     7: 第04->02行,对最终的8605条记录进行排序

     8:第01行,limit最终获取15条记录

    整个执行计划中耗时最长的地方在05行Nested Loop Semi Join,actual time=277.794..88932.662, 表db_zxzhld.t_zhld_db dbxx和db_zxzhld.t_zhld_ajdbxx均是全表扫描

2.2具体优化步骤

     查看索引页并没有索引,创建c_ajbh,c_dbbh等逻辑外键的索引

    

drop index  if exists I_T_ZHLD_AJDBXX_AJBH;

create index I_T_ZHLD_AJDBXX_AJBH on T_ZHLD_AJDBXX (c_ajbh);

commit;

drop index  if exists I_T_ZHLD_AJDBXX_DBBH;

create index I_T_ZHLD_AJDBXX_DBBH on T_ZHLD_AJDBXX (c_dbbh);

commit;

创建d_larq,c_ajbh的排序索引:

drop index  if exists I_T_ZHLD_AJDBXX_m6;create index I_T_ZHLD_AJDBXX_m6 on T_ZHLD_AJDBXX (c_zblx,c_dbfy,c_gy,d_larq asc,c_ajbh asc);

commit;

drop index if exists I_T_ZHLD_ZBAJXX_h3 ;

create index I_T_ZHLD_ZBAJXX_h3 on db_zxzhld.t_zhld_zbajxx  (n_dbzt,c_zblx,c_gy,c_gy);

commit;

       创建索引后执行计划有了改变,原来的dbaj表和dbxx表先做nestedloop变成了zbaj和dbaj表先做了nestedloop join,总的cost也从36328.68降到了12802.87,

执行计划

Limit  (cost=12802.87..12802.87 rows=1 width=107) (actual time=4263.598..4263.648 rows=15 loops=1)

  ->  Sort  (cost=12802.87..12802.87 rows=1 width=107) (actual time=4263.592..4263.609 rows=15 loops=1)

        Sort Key: dbaj.d_larq, dbaj.c_ajbh

        Sort Method: top-N heapsort  Memory: 27kB

        ->  Nested Loop  (cost=2516.05..12802.86 rows=1 width=107) (actual time=74.240..4239.723 rows=8605 loops=1)

              Join Filter: (dbaj.c_dbbh = dbxx.c_bh)

              Rows Removed by Join Filter: 111865

              ->  Nested Loop  (cost=2516.05..12736.34 rows=1 width=140) (actual time=74.083..327.974 rows=8605 loops=1)

                    ->  HashAggregate  (cost=2515.62..2522.76 rows=714 width=32) (actual time=74.025..90.185 rows=8605 loops=1)

                          Group Key: ("ANY_subquery".c_ajbh)::text

                          ->  Subquery Scan on "ANY_subquery"  (cost=2499.56..2513.84 rows=714 width=32) (actual time=28.782..59.823 rows=8605 loops=1)

                                ->  HashAggregate  (cost=2499.56..2506.70 rows=714 width=32) (actual time=28.778..39.968 rows=8605 loops=1)

                                      Group Key: zbaj.c_ajbh

                                      ->  Index Scan using i_t_zhld_zbajxx_h3 on t_zhld_zbajxx zbaj  (cost=0.42..2497.77 rows=715 width=32) (actual time=0.062..15.104 rows=8605 loops=1)

                                            Index Cond: ((n_dbzt = 1) AND ((c_zblx)::text = '1003'::text) AND ((c_gy)::text = '2550'::text))

                    ->  Index Scan using i_t_zhld_ajdbxx_ajbh on t_zhld_ajdbxx dbaj  (cost=0.42..14.29 rows=1 width=140) (actual time=0.015..0.021 rows=1 loops=8605)

                          Index Cond: ((c_ajbh)::text = ("ANY_subquery".c_ajbh)::text)

                          Filter: (((c_zblx)::text = '1003'::text) AND ((c_dbfy)::text = '0'::text) AND ((c_gy)::text = '2550'::text))

                          Rows Removed by Filter: 1

              ->  Seq Scan on t_zhld_db dbxx  (cost=0.00..66.45 rows=5 width=33) (actual time=0.015..0.430 rows=14 loops=8605)

                    Filter: ((n_valid = 1) AND ((c_dbztbh)::text = '1003'::text) AND (n_state = ANY ('{1,2,3}'::integer[])))

                    Rows Removed by Filter: 1298

Planning time: 1.075 ms

Execution time: 4263.803 ms

       执行的时间还是要4s左右仍然不满足需求,并且没有使用上I_T_ZHLD_AJDBXX_m6这个索引。

2.3等价改写SQL(1)

        等价改写:将排序条件加入db_zxzhld.t_zhld_ajdbxx让其先排序,再和t_zhld_db表连接。

修改后sql

Select dbaj.c_ajbh, dbaj.c_ah, dbaj.c_cbfy, dbaj.c_cbrxm, dbaj.d_larq, dbaj.d_jarq, dbaj.n_dbjg, dbaj.c_yqly from (select * from db_zxzhld.t_zhld_db  where  n_valid=1 and n_state in (1,2,3) and c_dbztbh='1003' )dbxx

 join (select * from db_zxzhld.t_zhld_ajdbxx  where n_valid=1 and c_zblx='1003'

 and c_dbfy='0' and c_gy = '2550' and

c_ajbh  in (select distinct c_ajbh from db_zxzhld.t_zhld_zbajxx where n_dbzt = 1 and c_zblx = '1003' and c_gy = '2550' ) order by d_larq asc, c_ajbh asc)dbajon dbxx.c_bh = dbaj.c_dbbh

 limit 15 offset 0

再次查看执行计划

Limit  (cost=3223.92..3231.97 rows=1 width=107) (actual time=127.291..127.536 rows=15 loops=1)

  ->  Nested Loop  (cost=3223.92..3231.97 rows=1 width=107) (actual time=127.285..127.496 rows=15 loops=1)

        ->  Sort  (cost=3223.64..3223.65 rows=1 width=140) (actual time=127.210..127.225 rows=15 loops=1)

              Sort Key: t_zhld_ajdbxx.d_larq, t_zhld_ajdbxx.c_ajbh

              Sort Method: quicksort  Memory: 2618kB

              ->  Hash Semi Join  (cost=2523.19..3223.63 rows=1 width=140) (actual time=55.913..107.265 rows=8605 loops=1)

                    Hash Cond: ((t_zhld_ajdbxx.c_ajbh)::text = (t_zhld_zbajxx.c_ajbh)::text)

                    ->  Index Scan using i_t_zhld_ajdbxx_m6 on t_zhld_ajdbxx  (cost=0.42..700.28 rows=219 width=140) (actual time=0.065..22.005 rows=8605 loops=1)

                          Index Cond: (((c_zblx)::text = '1003'::text) AND ((c_dbfy)::text = '0'::text) AND ((c_gy)::text = '2550'::text))

                    ->  Hash  (cost=2513.84..2513.84 rows=714 width=32) (actual time=55.802..55.802 rows=8605 loops=1)

                          Buckets: 16384 (originally 1024)  Batches: 1 (originally 1)  Memory Usage: 675kB

                          ->  HashAggregate  (cost=2499.56..2506.70 rows=714 width=32) (actual time=30.530..43.275 rows=8605 loops=1)

                                Group Key: t_zhld_zbajxx.c_ajbh

                                ->  Index Scan using i_t_zhld_zbajxx_h3 on t_zhld_zbajxx  (cost=0.42..2497.77 rows=715 width=32) (actual time=0.043..15.552 rows=8605 loops=1)

                                      Index Cond: ((n_dbzt = 1) AND ((c_zblx)::text = '1003'::text) AND ((c_gy)::text = '2550'::text))

        ->  Index Scan using t_zhld_db_pkey on t_zhld_db  (cost=0.28..8.30 rows=1 width=33) (actual time=0.009..0.011 rows=1 loops=15)

              Index Cond: (c_bh = t_zhld_ajdbxx.c_dbbh)

              Filter: (((c_dbztbh)::text = '1003'::text) AND (n_state = ANY ('{1,2,3}'::integer[])))

Planning time: 1.154 ms

Execution time: 127.734 ms

        这一次可以看出,ajdbxx和zbajxx表做了hash semi join 消除了nestedloop,cost降到了3231.97。并且使用上了i_t_zhld_ajdbxx_m6子查询中in的结果集有一万多条数据

       继续尝试使用exists等价改写in,看能否有更好的结果

2.4等价改写SQL(2)

等价改写:将in替换为exists:

        

select c_ajbh, c_ah, c_cbfy, c_cbrxm, d_larq, d_jarq, n_dbjg, c_yqlyfrom (select c_bh from db_zxzhld.t_zhld_db  where n_state in (1,2,3) and c_dbztbh='1003' )dbxx
 join (select c_ajbh, c_ah, c_cbfy, c_cbrxm, d_larq, d_jarq, n_dbjg, c_yqly,c_dbbh from db_zxzhld.t_zhld_ajdbxx   ajdbxxwhere c_zblx='1003'
 and c_dbfy='0' and c_gy = '2550' and 
exists (select distinct c_ajbh from db_zxzhld.t_zhld_zbajxx zbajxx where ajdbxx.c_ajbh = zbajxx.c_ajbh and n_dbzt = 1 and c_zblx = '1003' and c_gy = '2550' ) order by d_larq asc, c_ajbh asc)dbajon dbxx.c_bh = dbaj.c_dbbh 
 limit 15 offset 0

再次查看执行计划:

Limit  (cost=1.12..2547.17 rows=1 width=107) (actual time=0.140..0.727 rows=15 loops=1)

  ->  Nested Loop  (cost=1.12..2547.17 rows=1 width=107) (actual time=0.136..0.689 rows=15 loops=1)

        ->  Nested Loop Semi Join  (cost=0.85..2538.84 rows=1 width=140) (actual time=0.115..0.493 rows=15 loops=1)

              ->  Index Scan using i_t_zhld_ajdbxx_m6 on t_zhld_ajdbxx t2  (cost=0.42..700.28 rows=219 width=140) (actual time=0.076..0.127 rows=15 loops=1)

                    Index Cond: (((c_zblx)::text = '1003'::text) AND ((c_dbfy)::text = '0'::text) AND ((c_gy)::text = '2550'::text))

              ->  Index Scan using i_t_zhld_zbajxx_c_ajbh on t_zhld_zbajxx t3  (cost=0.42..8.40 rows=1 width=32) (actual time=0.019..0.019 rows=1 loops=15)

                    Index Cond: ((c_ajbh)::text = (t2.c_ajbh)::text)

                    Filter: (((c_zblx)::text = '1003'::text) AND ((c_gy)::text = '2550'::text) AND (n_dbzt = 1))

        ->  Index Scan using t_zhld_db_pkey on t_zhld_db  (cost=0.28..8.30 rows=1 width=33) (actual time=0.007..0.008 rows=1 loops=15)

              Index Cond: (c_bh = t2.c_dbbh)

              Filter: (((c_dbztbh)::text = '1003'::text) AND (n_state = ANY ('{1,2,3}'::integer[])))

Planning time: 1.268 ms

Execution time: 0.859 ms

​

可以看出使用exist效果更好,最终cost 2547.17

(1).少了t_zhld_zbajxx表的group by操作:Sort Key: t_zhld_ajdbxx.d_larq, t_zhld_ajdbxx.c_ajbh。(这一步是因为使用了索引中的排序)

(2).少了分组的操作:Group Key: t_zhld_zbajxx.c_ajbh。

第(2)为什么这个查询消除了t_zhld_zbajxx表的group by操作呢?

原因是exists替换了distinct的功能,一旦满足条件则立刻返回。所以使用exists的时候子查询可以直接去掉distinct。

你可能感兴趣的:(PostgreSql查询优化之根据执行计划优化SQL)