无数种求逆元的方法总结

乘法逆元

对于缩系中的元素,每个数a均有唯一的与之对应的乘法逆元x,使得ax≡1(mod n)
一个数有逆元的充分必要条件是gcd(a,n)=1,此时逆元唯一存在 
逆元的含义:模n意义下,1个数a如果有逆元x,那么除以a相当于乘以x。

 

下面给出求逆元的几种方法:

1.扩展欧几里得

给定模数m,求a的逆相当于求解ax=1(mod m)
这个方程可以转化为ax-my=1 
然后套用求二元一次方程的方法,用扩展欧几里得算法求得一组x0,y0和gcd 
检查gcd是否为1 
gcd不为1则说明逆元不存在 
若为1,则调整x0到0~m-1的范围中即可

PS:这种算法效率较高,常数较小,时间复杂度为O(ln n)

 

 

2.费马小定理

在模为素数p的情况下,有费马小定理 
a^(p-1)=1(mod p) 
那么a^(p-2)=a^-1(mod p) 
也就是说a的逆元为a^(p-2)

而在模不为素数p的情况下,有欧拉定理 
a^phi(m)=1(mod m) (a⊥m) 
同理a^-1=a^(phi(m)-1)

因此逆元x便可以套用快速幂求得了x=a^(phi(m)-1)

但是似乎还有个问题?如何判断a是否有逆元呢? 

检验逆元的性质,看求出的幂值x与a相乘是否为1即可

PS:这种算法复杂度为O(log2N)在几次测试中,常数似乎较上种方法大

当p比较大的时候需要用快速幂求解

 

当模p不是素数的时候需要用到欧拉定理

a^phi(p)≡1               (mod p)

a*a^(phi(p)-1)≡1      (mod p)

a^(-1)≡a^(phi(p)-1)  (mod p)

所以
时间复杂度即求出单个欧拉函数的值

(当p为素数的时候phi(p)=p-1,则phi(p)-1=p-2可以看出欧拉定理是费马小定理的推广)

PS:这里就贴出欧拉定理的板子,很少会用欧拉定理求逆元

 

 

3.特殊情况

一:

当N是质数, 
这点也很好理解。当N是质数,0 < a < N时,,则a肯定存在逆元。 
而解出的就满足,故它是a的逆元。

在CF 696C,

求解就灰常方便了…

二:

求逆元一般公式(条件b|a)

ans=a/bmodm=amod(mb)/b

公式证明:

无数种求逆元的方法总结_第1张图片

PS:实际上a mod (bm)/b这种的对于所有的都适用,不区分互不互素,而费马小定理和扩展欧几里得算法求逆元是有局限性的,它们都会要求互素,如果a与m不互素,那就没有逆元,这个时候需要a mod (bm)/b来搞(此时就不是逆元的概念了)。但是当a与m互素的时候,bm可能会很大,不适合套这个一般公式,所以大部分时候还是用逆元来搞

4.逆元打表

 

 

有时会遇到这样一种问题,在模质数p下,求1~n逆元 n< p(这里为奇质数)。可以O(n)求出所有逆元,有一个递推式如下

 

                   

 

它的推导过程如下,设,那么

 

       

 

对上式两边同时除,进一步得到

 

       

 

再把替换掉,最终得到

 

       

 

初始化,这样就可以通过递推法求出1->n模奇素数的所有逆元了。

 

另外有个结论的所有逆元值对应中所有的数,比如,那么对应的逆元是

typedef  long long ll;
const int N = 1e5 + 5;
int inv[N];
 
void inverse(int n, int p) {
    inv[1] = 1;
    for (int i=2; i<=n; ++i) {
        inv[i] = (ll) (p - p / i) * inv[p%i] % p;
    }
}

 

转自:https://blog.csdn.net/guhaiteng/article/details/52123385

更多例题:https://blog.csdn.net/acdreamers/article/details/8220787

 

线性求逆元   题目

ll c(int r,int l) {
	if (r

线性求逆元  题目

const ll mod = 1000000000+7;
const ll N = 300000+5;
const ll M = 3e5+3;
int n;
ll fac[1000005];            //阶乘
ll inv_of_fac[1000005];        //阶乘的逆元
int a[15];
ll dp[150][12];
ll qpow(ll x,ll n)
{
    ll ret=1;
    for(; n; n>>=1)
    {
        if(n&1) ret=ret*x%mod;
        x=x*x%mod;
    }
    return ret;
}
void init()
{
    fac[1]=1;
    for(int i=2; i<=M; i++)
        fac[i]=fac[i-1]*i%mod;
    inv_of_fac[M]=qpow(fac[M],mod-2);
    for(int i=M-1; i>=0; i--)
        inv_of_fac[i]=inv_of_fac[i+1]*(i+1)%mod;
		//inv_of_fac[i]=qpow(fac[i],mod-2);//为什么不行啊 //也行
}
ll C(ll a,ll b)
{
    if(b>a) return 0;
    if(b==0) return 1;
    return fac[a]*inv_of_fac[b]%mod*inv_of_fac[a-b]%mod;
}

咖啡鸡的求逆元:

#include
using namespace std;
const int maxn=4005;
const int E=2000;
typedef long long ll;
const ll M=1000000007;
ll f[maxn],nf[maxn],inv[maxn],dp[2][maxn];
int n,m;
ll C(ll x,ll y){
    return f[x]*nf[y]%M*nf[x-y]%M;
}
ll K(ll x){
    return C(x*2,x)*inv[x+1]%M;
}
void add(ll &x,ll y){
    x+=y; if (x>=M) x-=M;
}
int main(){
    inv[1]=1; for (int i=2;i

 

你可能感兴趣的:(数论,知识点,总结)