使用深度学习算法 DQN 来玩 flappy bird 无敌了!

靠自己变强才是 AI 的强大!看我的强化学习算法自己玩 Flappy Bird!

使用深度学习算法 DQN 来玩 flappy bird

安装依赖

pip install parl == 1.3.1

pip install pygame

pip install paddlepaddle

模拟环境 PLE 库

(PyGame-Learning-Environment)[https://github.com/ntasfi/PyGame-Learning-Environment]

模型简介

使用了 百度 PARL 深度学习库直接调用 DQN 算法

由于游戏的 state 仅有 8 维,所以模型网络仅使用了 2 个全连接层

收敛情况

在训练了 1000 个 episode 以后可以明显看出在逐步收敛

在训练了 10000 个 episode 以后,测试中基本可以保持一直进行下去,所以不得不限制到达一定分数就终止游戏

参数调整心得

需要保持较高的探索概率,30%-20%较佳

import parl
from parl import layers
import paddle.fluid as fluid
from parl.utils import logger
from parl.algorithms import DQN

from ple.games.flappybird import FlappyBird
from ple import PLE
from pygame.constants import K_w

import random
import collections
import numpy as np

actions = {"up": K_w}
#LEARN_FREQ = 5 # 训练频率,不需要每一个step都learn,攒一些新增经验后再learn,提高效率
LEARN_FREQ = 5
#MEMORY_SIZE = 20000    # replay memory的大小,越大越占用内存
MEMORY_SIZE = 20000
#MEMORY_WARMUP_SIZE = 200  # replay_memory 里需要预存一些经验数据,再从里面sample一个batch的经验让agent去learn
MEMORY_WARMUP_SIZE = 200
#BATCH_SIZE = 32   # 每次给agent learn的数据数量,从replay memory随机里sample一批数据出来
BATCH_SIZE = 32
#GAMMA = 0.99 # reward 的衰减因子,一般取 0.9 到 0.999 不等
GAMMA = 0.999
LEARNING_RATE = 0.0001 # 学习率


class Model(parl.Model):
    def __init__(self, act_dim):
        hid1_size = 128
        hid2_size = 128

        self.fc1 = layers.fc(size=hid1_size, act='tanh')
        self.fc2 = layers.fc(size=hid2_size, act='tanh')
        self.fc3 = layers.fc(size=act_dim, act=None)

    def value(self, obs):
        # 定义网络
        # 输入state,输出所有action对应的Q,[Q(s,a1), Q(s,a2)]

        h1 = self.fc1(obs)
        h2 = self.fc2(h1)
        Q = self.fc3(h2)
        return Q

class Agent(parl.Agent):
    def __init__(self,
                 algorithm,
                 obs_dim,
                 act_dim,
                 e_greed=0.1,
                 e_greed_decrement=0):
        assert isinstance(obs_dim, int)
        assert isinstance(act_dim, int)
        self.obs_dim = obs_dim
        self.act_dim = act_dim
        super(Agent, self).__init__(algorithm)

        self.global_step = 0
        #self.update_target_steps = 200  # 每隔200个training steps再把model的参数复制到target_model中
        self.update_target_steps = 200

        self.e_greed = e_greed  # 有一定概率随机选取动作,探索
        self.e_greed_decrement = e_greed_decrement  # 随着训练逐步收敛,探索的程度慢慢降低

    def build_program(self):
        self.pred_program = fluid.Program()
        self.learn_program = fluid.Program()

        with fluid.program_guard(self.pred_program):  # 搭建计算图用于 预测动作,定义输入输出变量
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            self.value = self.alg.predict(obs)

        with fluid.program_guard(self.learn_program):  # 搭建计算图用于 更新Q网络,定义输入输出变量
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            action = layers.data(name='act', shape=[1], dtype='int32')
            reward = layers.data(name='reward', shape=[], dtype='float32')
            next_obs = layers.data(
                name='next_obs', shape=[self.obs_dim], dtype='float32')
            terminal = layers.data(name='terminal', shape=[], dtype='bool')
            self.cost = self.alg.learn(obs, action, reward, next_obs, terminal)

    def sample(self, obs):
        sample = np.random.rand()  # 产生0~1之间的小数
        if sample < self.e_greed:
            act = np.random.randint(self.act_dim)  # 探索:每个动作都有概率被选择
        else:
            act = self.predict(obs)  # 选择最优动作
        self.e_greed = max(
            0.1, self.e_greed - self.e_greed_decrement)  # 随着训练逐步收敛,探索的程度慢慢降低
        #self.e_greed = 0.2
        return act

    def predict(self, obs):  # 选择最优动作
        obs = np.expand_dims(obs, axis=0)
        pred_Q = self.fluid_executor.run(
            self.pred_program,
            feed={'obs': obs.astype('float32')},
            fetch_list=[self.value])[0]
        pred_Q = np.squeeze(pred_Q, axis=0)
        act = np.argmax(pred_Q)  # 选择Q最大的下标,即对应的动作
        return act

    def learn(self, obs, act, reward, next_obs, terminal):
        # 每隔200个training steps同步一次model和target_model的参数
        if self.global_step % self.update_target_steps == 0:
            self.alg.sync_target()
        self.global_step += 1

        act = np.expand_dims(act, -1)
        feed = {
            'obs': obs.astype('float32'),
            'act': act.astype('int32'),
            'reward': reward,
            'next_obs': next_obs.astype('float32'),
            'terminal': terminal
        }
        cost = self.fluid_executor.run(
            self.learn_program, feed=feed, fetch_list=[self.cost])[0]  # 训练一次网络
        return cost

# replay_memory.py
class ReplayMemory(object):
    def __init__(self, max_size):
        self.buffer = collections.deque(maxlen=max_size)

    # 增加一条经验到经验池中
    def append(self, exp):
        self.buffer.append(exp)

    # 从经验池中选取N条经验出来
    def sample(self, batch_size):
        mini_batch = random.sample(self.buffer, batch_size)
        obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], []

        for experience in mini_batch:
            s, a, r, s_p, done = experience
            obs_batch.append(s)
            action_batch.append(a)
            reward_batch.append(r)
            next_obs_batch.append(s_p)
            done_batch.append(done)

        return np.array(obs_batch).astype('float32'), \
            np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'),\
            np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32')

    def __len__(self):
        return len(self.buffer)

# 训练一个episode
def run_episode(env, agent, rpm):
    total_reward = 0

    env.init()
    step = 0
    while True:
        # 第一帧为黑屏,不操作
        if (step == 0):
            reward = env.act(None)
            done = False

        else:
            obs = list(env.getGameState().values())
            action = agent.sample(obs)  # 采样动作,所有动作都有概率被尝试到
            # 神经网络输出转化为实际动作
            if action == 1:
                act = actions["up"]
            else:
                act = None

            reward = env.act(act)
            done = env.game_over()
            next_obs = list(env.getGameState().values())

            rpm.append((obs, action, reward, next_obs, done))

            # train model
            if (len(rpm) > MEMORY_WARMUP_SIZE) and (step % LEARN_FREQ == 0):
                (batch_obs, batch_action, batch_reward, batch_next_obs,
                 batch_done) = rpm.sample(BATCH_SIZE)
                train_loss = agent.learn(batch_obs, batch_action, batch_reward,
                                         batch_next_obs,
                                         batch_done)  # s,a,r,s',done

            total_reward += reward

        if done:
            print(step)
            env.reset_game() # 重置游戏
            break

        step += 1

    return total_reward


# 评估 agent, 跑 5 个episode,总reward求平均
def evaluate(env, agent):
    eval_reward = []
    for i in range(5):
        env.init()
        episode_reward = 0
        step = 0
        while True:
            # 第一帧为黑屏,不操作
            if (step == 0):
                reward = env.act(None)
                done = False

            else:
                obs = list(env.getGameState().values())
                action = agent.predict(obs)  # 预测动作,只选最优动作

                # 神经网络输出转化为实际动作
                if action == 1:
                    act = actions["up"]
                else:
                    act = None

                reward = env.act(act)
                done = env.game_over()

                episode_reward += reward

            if (step == 5000):
                print(step)
                break

            if done:
                print(step)
                env.reset_game()  # 重置游戏
                break

            step += 1

        eval_reward.append(episode_reward)
    return np.mean(eval_reward)


# 创建环境
game = FlappyBird()
env_1 = PLE(game, fps=30, display_screen=False)
env_2 = PLE(game, fps=30, display_screen=False)
obs_dim = len(env_1.getGameState())
act_dim = 2
logger.info('obs_dim {}, act_dim {}'.format(obs_dim, act_dim))

# 创建经验池
rpm = ReplayMemory(MEMORY_SIZE)  # DQN的经验回放池



# 根据parl框架构建agent
model = Model(act_dim=act_dim)
algorithm = DQN(model, act_dim = act_dim, gamma=GAMMA, lr=LEARNING_RATE)
agent = Agent(
    algorithm,
    obs_dim = obs_dim,
    act_dim = act_dim,
    e_greed = 0.2,
    e_greed_decrement = 1e-6

)


# 加载模型
save_path = 'bird_dqn_v3_7.ckpt'
agent.restore(save_path)

# 先往经验池里存一些数据,避免最开始训练的时候样本丰富度不够
while len(rpm) < MEMORY_WARMUP_SIZE:
    run_episode(env_1, agent, rpm)

max_episode = 2000

# 开始训练
episode = 0
while episode < max_episode:  # 训练max_episode个回合,test部分不计算入episode数量
    # train part
    for i in range(0, 100):
        total_reward = run_episode(env_1, agent, rpm)
        episode += 1

    # test part
    eval_reward = evaluate(env_2, agent)  # render=True 查看显示效果
    logger.info('episode:{}    e_greed:{}   test_reward:{}'.format(
        episode, agent.e_greed, eval_reward))
    # 保存模型
    ckpt = 'bird_dqn_v3_dir/steps_{}.ckpt'.format(episode)
    agent.save(ckpt)

# 训练结束,保存模型
save_path = './bird_dqn_v3_8.ckpt'
agent.save(save_path)

你可能感兴趣的:(强化学习,神经网络,机器学习,强化学习,算法)