操作系统:windows 10 家庭中文版
数据库系统: PostgreSQL 9.6.2
postgresql从9.5版本开始新加入了group by的分组集合功能,提供了GROUPING SETS,CUBE,ROLLUP参数,使用方式与oracle完全一致,下面是实际测试说明
创建表t并插入测试数据:
create table t(id int,name varchar(20),class int,score int);
insert into t values(1,'math',1,90);
insert into t values(2,'math',2,80);
insert into t values(3,'math',1,70);
insert into t values(4,'chinese',2,60);
insert into t values(5,'chinese',1,50);
insert into t values(6,'chinese',2,60);
insert into t values(7,'physical',1,70);
insert into t values(8,'physical',2,80);
insert into t values(9,'physical',1,90);
结果:
test=# select * from t;
id | name | class | score
----+----------+-------+-------
1 | math | 1 | 90
2 | math | 2 | 80
3 | math | 1 | 70
4 | chinese | 2 | 60
5 | chinese | 1 | 50
6 | chinese | 2 | 60
7 | physical | 1 | 70
8 | physical | 2 | 80
9 | physical | 1 | 90
(9 行记录)
根据name和class字段求和:
test=# select name,class,sum(score)
test-# from t
test-# group by name,class
test-# order by name,class
test-# ;
name | class | sum
----------+-------+-----
chinese | 1 | 50
chinese | 2 | 120
math | 1 | 160
math | 2 | 80
physical | 1 | 160
physical | 2 | 80
(6 行记录)
GROUPING SETS的每个子列表可以指定零个或多个列或表达式,并且与其直接在GROUP BY子句中的解释方式相同。 一个空的分组集合意味着所有的行都被聚合到一个组中(即使没有输入行存在,也是输出)。
test=# select name,class,sum(score)
test-# from t
test-# group by grouping sets((name),(class),())
test-# order by name,class
test-# ;
name | class | sum
----------+-------+-----
chinese | | 170
math | | 240
physical | | 240
| 1 | 370
| 2 | 280
| | 650
(6 行记录)
顺带一提,默认的group by语句相当于grouping set在grouping set后的参数填上所有group by的字段。如下:
test=# select name,class,sum(score)
test-# from t
test-# group by grouping sets((name,class))
test-# order by name,class
test-# ;
name | class | sum
----------+-------+-----
chinese | 1 | 50
chinese | 2 | 120
math | 1 | 160
math | 2 | 80
physical | 1 | 160
physical | 2 | 80
(6 行记录)
与不使用grouping set语句时的结果完全相同
* rollup((a),(b),(c))等价于grouping sets((a,b,c),(a,b),(a),()) *
test=# select name,class,sum(score)
test-# from t
test-# group by rollup((name),(class))
test-# order by name,class
test-# ;
name | class | sum
----------+-------+-----
chinese | 1 | 50
chinese | 2 | 120
chinese | | 170
math | 1 | 160
math | 2 | 80
math | | 240
physical | 1 | 160
physical | 2 | 80
physical | | 240
| | 650
(10 行记录)
等价于:
grouping sets((name,class),(name),())
* cube((a),(b),(c))等价于grouping sets((a,b,c),(a,b),(a,c),(a),(b,c),(b),(c),()) *
test=# select name,class,sum(score)
test-# from t
test-# group by cube((name),(class))
test-# order by name,class
test-# ;
name | class | sum
----------+-------+-----
chinese | 1 | 50
chinese | 2 | 120
chinese | | 170
math | 1 | 160
math | 2 | 80
math | | 240
physical | 1 | 160
physical | 2 | 80
physical | | 240
| 1 | 370
| 2 | 280
| | 650
(12 行记录)
等价于:
grouping sets((name,class),(name),(class),())
我遇到一个需求,需要在分组统计总和之外附加所有组的总和,命名为total:
test=# select coalesce(name,'total') as name,
test-# coalesce(class,0) as class,
test-# coalesce(sum(score),0) as sum_score,
test-# coalesce(round(avg(score),2),0) as avg_score
test-# from t
test-# group by grouping sets((name,class),())
test-# order by name,class
test-# ;
name | class | sum_score | avg_score
----------+-------+-----------+-----------
chinese | 1 | 50 | 50.00
chinese | 2 | 120 | 60.00
math | 1 | 160 | 80.00
math | 2 | 80 | 80.00
physical | 1 | 160 | 80.00
physical | 2 | 80 | 80.00
total | 0 | 650 | 72.22
(7 行记录)