Pipeline 聚合分析
DELETE employees
PUT /employees/_bulk
{ "index" : { "_id" : "1" } }
{ "name" : "Emma","age":32,"job":"Product Manager","gender":"female","salary":35000 }
{ "index" : { "_id" : "2" } }
{ "name" : "Underwood","age":41,"job":"Dev Manager","gender":"male","salary": 50000}
{ "index" : { "_id" : "3" } }
{ "name" : "Tran","age":25,"job":"Web Designer","gender":"male","salary":18000 }
{ "index" : { "_id" : "4" } }
{ "name" : "Rivera","age":26,"job":"Web Designer","gender":"female","salary": 22000}
{ "index" : { "_id" : "5" } }
{ "name" : "Rose","age":25,"job":"QA","gender":"female","salary":18000 }
{ "index" : { "_id" : "6" } }
{ "name" : "Lucy","age":31,"job":"QA","gender":"female","salary": 25000}
{ "index" : { "_id" : "7" } }
{ "name" : "Byrd","age":27,"job":"QA","gender":"male","salary":20000 }
{ "index" : { "_id" : "8" } }
{ "name" : "Foster","age":27,"job":"Java Programmer","gender":"male","salary": 20000}
{ "index" : { "_id" : "9" } }
{ "name" : "Gregory","age":32,"job":"Java Programmer","gender":"male","salary":22000 }
{ "index" : { "_id" : "10" } }
{ "name" : "Bryant","age":20,"job":"Java Programmer","gender":"male","salary": 9000}
{ "index" : { "_id" : "11" } }
{ "name" : "Jenny","age":36,"job":"Java Programmer","gender":"female","salary":38000 }
{ "index" : { "_id" : "12" } }
{ "name" : "Mcdonald","age":31,"job":"Java Programmer","gender":"male","salary": 32000}
{ "index" : { "_id" : "13" } }
{ "name" : "Jonthna","age":30,"job":"Java Programmer","gender":"female","salary":30000 }
{ "index" : { "_id" : "14" } }
{ "name" : "Marshall","age":32,"job":"Javascript Programmer","gender":"male","salary": 25000}
{ "index" : { "_id" : "15" } }
{ "name" : "King","age":33,"job":"Java Programmer","gender":"male","salary":28000 }
{ "index" : { "_id" : "16" } }
{ "name" : "Mccarthy","age":21,"job":"Javascript Programmer","gender":"male","salary": 16000}
{ "index" : { "_id" : "17" } }
{ "name" : "Goodwin","age":25,"job":"Javascript Programmer","gender":"male","salary": 16000}
{ "index" : { "_id" : "18" } }
{ "name" : "Catherine","age":29,"job":"Javascript Programmer","gender":"female","salary": 20000}
{ "index" : { "_id" : "19" } }
{ "name" : "Boone","age":30,"job":"DBA","gender":"male","salary": 30000}
{ "index" : { "_id" : "20" } }
{ "name" : "Kathy","age":29,"job":"DBA","gender":"female","salary": 20000}
在员工数最多的工种中,找出平均工资最低的工种
先通过aggregation找出所有工作的平均工资,然后通过pipeline管道的sibling 分析出工资最低的工种, 在buckts_path中指定再次聚合分析的路径
POST employees/_search
{
"size": 0,
"aggs": {
"job_salary_avg": {
"terms": {
"field": "job.keyword"
},
"aggs": {
"salary_avg": {
"avg": {
"field": "salary"
}
}
}
},
"min_salary_avg":{
"min_bucket": {
"buckets_path": "job_salary_avg>salary_avg"
}
}
}
}
找出平均工资最高的工作类型
POST employees/_search
{
"size": 0,
"aggs": {
"job": {
"terms": {
"field": "job.keyword"
},
"aggs": {
"job_avg": {
"avg": {
"field": "salary"
}
}
}
},
"max_salary_avg":{
"max_bucket": {
"buckets_path": "job>job_avg"
}
}
}
}
计算出平均工资的平均工资
POST employees/_search
{
"size": 0,
"aggs": {
"job": {
"terms": {
"field": "job.keyword"
},
"aggs": {
"job_avg": {
"avg": {
"field": "salary"
}
}
}
},
"avg_salary_avg":{
"avg_bucket": {
"buckets_path": "job>job_avg"
}
}
}
}
平均工资的统计分析
POST employees/_search
{
"size": 0,
"aggs": {
"job": {
"terms": {
"field": "job.keyword"
},
"aggs": {
"job_avg": {
"avg": {
"field": "salary"
}
}
}
},
"stats_salary_avg":{
"stats_bucket": {
"buckets_path": "job>job_avg"
}
}
}
}
parent pipeline derivative
按照年龄,对工资进行求导
POST employees/_search
{
"size": 0,
"aggs": {
"age": {
"histogram": {
"field": "age",
"interval": 1,
"min_doc_count": 1
},
"aggs": {
"avg_salary": {
"avg": {
"field": "salary"
}
},
"derivative_avg_salary": {
"derivative": {
"buckets_path": "avg_salary"
}
}
}
}
}
}