冯・诺依曼体系结构

#冯・诺伊曼体系结构#

冯desu・诺依曼理论的要点是:数字计算机的数制采用二进制;计算机应该按照程序顺序执行。人们把冯・诺依曼的这个理论称为冯・诺依曼体系结构。

根据冯・诺依曼体系结构构成的计算,必须有以下功能:把需要的程序和数据送到计算机中。必须具有长期记忆程序、数据、中间结果及最终运算结果的能力。能够完成各种算术、逻辑运算和数据传送等数据加工处理的功能。能够根据需要控制程序走向,并能根据指令控制机器的各部件协调操作。能够按照要求将处理结果输出给用户。

因此,计算机必须具备五大基本组件:运算器、控制器、存储器、输入设备和输出设备。

冯・诺依曼体系结构是现代计算机的基础,现在大多数计算机仍是冯・诺依曼计算机的组织结构,只是做了一些改进而已,并没有从根本上突破冯体系结构的束缚。冯・诺依曼也因此被人们称为“计算机之父”。然而由于传统的冯・诺依曼计算机体系结构天然搜具有的局限性,从根本上限制了计算机的发展。

(1)采用存储程序方式

指令和数据不加区别混合存储在同一个存储器中,(数据和程序在内存中是没有区别的,它们都是内存中的数据,当EIP指针指向哪 CPU就加载那段内存中的数据,如果是不正确的指令格式,CPU就会发生错误中断. 在现在CPU的保护模式中,每个内存段都其描述符,这个描述符记录着这个内存段的访问权限(可读,可写,可执行).这最就变相的指定了哪个些内存中存储的是指令哪些是数据)

指令和数据都可以送到运算器进行运算,即由指令组成的程序是可以修改的。

(2)存储器是按地址访问的线性编址的一维结构,每个单元的位数是固定的。

(3)指令由操作码和地址组成。

操作码指明本指令的操作类型,地址码指明操作数和地址。操作数本身无数据类型的标志,它的数据类型由操作码确定。

(4)通过执行指令直接发出控制信号控制计算机的操作。

指令在存储器中按其执行顺序存放,由指令计数器指明要执行的指令所在的单元地址。指令计数器只有一个,一般按顺序递增,但执行顺序可按运算结果或当时的外界条件而改变。

(5)以运算器为中心,I/O设备与存储器间的数据传送都要经过运算器。

(6)数据以二进制表示。

从本质上讲,冯.诺依曼体系结构的本征属性就是二个一维性,即一维的计算模型和一维的存储模型,简单地说“存储程序”是不确切的。而正是这二个一维性,成就了现代计算机的辉煌,也限制了计算机的进一步的发展,真可谓“成也冯,败也冯”。

冯·诺依曼计算机的软件和硬件完全分离,适用于作数值计算。这种计算机的机器语言同高级语言在语义上存在很大的间隔,称之为冯.依曼语义间隔。造成这个差距的其中一个重要原因就是存储器组织方式不同,冯·诺依曼机存储器是一维的线性排列的单元,按顺序排列的地址访问。而高级语言表示的存储器则是一组有名字的变量,按名字调用变量,不考虑访问方法,而且数据结构经常是多维的(如数组,表格)。另外,在大多数高级语言中,数据和指令截然不同,并无指令可以像数据一样进行运算操作的概念。同时,高级语言中的每种操作对于任何数据类型都是通用的,数据类型属于数据本身,而冯.诺依曼机的数据本身没有属性标志,同一种操作要用不同的操作码来对数据加以区分。这些因素导致了语义的差距。如何消除如此大的语义间隔,这成了计算机面临的一大难题和发展障碍。

冯.诺依曼体系结构的局限严重束缚了现代计算机的进一步发展,而非数值处理应用领域对计算机性能的要求越来越高,这就亟待需要突破传统计算机体系结构的框架,寻求新的体系结构来解决实际应用问题。目前在体系结构方面已经有了重大的变化和改进,如文章开头提到的并行计算机、数据流计算机以及量子计算机、DNA计算机等非冯计算机,它们部分或完全不同于传统的冯.诺依曼型计算机,很大程度上提高了计算机的计算性能。


必须看到,传统的冯·诺依曼型计算机从本质上讲是采取串行顺序处理的工作机制,即使有关数据巳经准备好,也必须逐条执行指令序列。而提高计算机性能的根本方向之一是并行处理。因此,近年来人们谋求突破传统冯·诺依曼体制的束缚,这种努力被称为非诺依曼化。对所谓非诺依曼化的探讨仍在争议中,一般认为它表现在以下三个方面的努力。

(1)在冯·诺依曼体制范畴内,对传统冯·诺依曼机进行改造,如采用多个处理部件形成流水处理, 依靠时间上的重叠提高处理效率;又如组成阵列机结构,形成单指令流多数据流,提高处理速度。这些方向已比较成熟,成为标准结构;

(2)用多个冯·诺依曼机组成多机系统,支持并行算法结构。这方面的研究目前比较活跃;

(3)从根本上改变冯·诺依曼机的控制流驱动方式。

例如,采用数据流驱动工作方式的数据流计算机,只要数据已经准备好,有关的指令就可并行地执行。这是真正非诺依曼化的计算机,它为并行处理开辟了新的前景,但由于控制的复杂性,仍处于实验探索之中。
 

你可能感兴趣的:(冯・诺依曼体系结构)