5G通信的一些关键技术

按照3GPP的定义,5G具备高性能、低延迟与高容量特性,而这些优点主要体现在毫米波、小基站、Massive MIMO、全双工以及波束成形这五大技术。

其中Massive MIMO波束成形紧密相关。

 

1、毫米波

 

  • 无线传输增加传输速率一般有两种方法,一是增加频谱利用率,二是增加频谱带宽。
  • 5G使用毫米波(26.5~300GHz)就是通过第二种方法来提升速率,以28GHz频段为例,其可用频谱带宽达到了1GHz,而60GHz频段每个信道的可用信号带宽则为2GHz。
  • 毫米波最大的缺点就是穿透力差、衰减大,因此要让毫米波频段下的5G通信在高楼林立的环境下传输并不容易,而小基站将解决这一问题。

 


 

2、小基站

 

  • 毫米波的频率很高,波长很短,这就意味着其天线尺寸可以做得很小,这是部署小基站的基础。
  • 未来5G移动通信将不再依赖大型基站的布建架构,大量的小型基站将成为新的趋势,它可以覆盖大基站无法触及的末梢通信。
  • 因为体积的大幅缩小,我们设置可以在250米左右部署一个小基站。
  • 这样排列下来,运营商可以在每个城市中部署数千个小基站以形成密集网络,每个基站可以从其它基站接收信号并向任何位置的用户发送数据。
  • 小基站不仅在规模上要远远小于大基站,功耗上也大大缩小了。

 


 

3、Massive MIMO

 

  • 除了通过毫米波广播之外,5G基站还将拥有比现在蜂窝网络基站多得多的天线,也就是Massive MIMO技术。
  • 见博文http://blog.csdn.net/oqqhutu12345678/article/details/73968552
  • 现有的4G基站只有十几根天线,但5G基站可以支持上百根天线,这些天线可以通过Massive MIMO技术形成大规模天线阵列。
  • 这就意味着基站可以同时从更多用户发送和接收信号,从而将移动网络的容量提升数十倍倍或更大。
  • MIMO(Multiple-Input Multiple-Output)的意思是多输入多输出,实际上这种技术已经在一些4G基站上得到了应用。
  • 但到目前为止,Massive MIMO仅在实验室和几个现场试验中进行了测试。
  • 隆德大学教授Ove Edfors曾指出,“Massive MIMO开启了无线通讯的新方向——当传统系统使用时域或频域为不同用户之间实现资源共享时,Massive MIMO则导入了空间域(spatial domain)的途径,其方式是在基地台采用大量的天线以及为其进行同步处理,如此则可同时在频谱效益与能源效率方面取得几十倍的增益。”

 


 

4、波束成型

 

  • Massive MIMO是5G能否实现商用的关键技术,但是多天线也势必会带来更多的干扰,而波束成形就是解决这一问题的关键。
  • Massive MIMO的主要挑战是减少干扰,但正是因为Massive MIMO技术每个天线阵列集成了更多的天线,如果能有效地控制这些天线,让它发出的每个电磁波的空间互相抵消或者增强,就可以形成一个很窄的波束,而不是全向发射,有限的能量都集中在特定方向上进行传输,不仅传输距离更远了,而且还避免了信号的干扰,这种将无线信号(电磁波)按特定方向传播的技术叫做波束成形(beamforming)。
  • 这一技术的优势不仅如此,它可以提升频谱利用率,通过这一技术我们可以同时从多个天线发送更多信息;
  • 在大规模天线基站,我们甚至可以通过信号处理算法来计算出信号的传输的最佳路径,并且最终移动终端的位置。
  • 因此,波束成形可以解决毫米波信号被障碍物阻挡以及远距离衰减的问题。

 


 

5、全双工技术

 

  • 全双工技术是指设备的发射机和接收机占用相同的频率资源同时进行工作,使得通信两端在上、下行可以在相同时间使用相同的频率,突破了现有的频分双工(FDD)和时分双工(TDD)模式,这是通信节点实现双向通信的关键之一,也是5G所需的高吞吐量和低延迟的关键技术。
  • 在同一信道上同时接收和发送,这无疑大大提升了频谱效率。但是5G要使用这一颠覆性技术也面临着不小的挑战,根据《移动通信》之前发布的资料显示,主要有以下三大挑战:(1)电路板件设计,自干扰消除电路需满足宽频(大于100MHZ)和多MIMO(多于32天线)的条件,且要求尺寸小、功耗低以及成本不能太高。(2)物理层、MAC层的优化设计问题,比如编码、调制、同步、检测、侦听、冲突避免、ACK等,尤其是针对MIMO的物理层优化。(3)对全双工和半双工之间动态切换的控制面优化,以及对现有帧结构和控制信令的优化问题。

你可能感兴趣的:(LTE)