uvalive4256(DP)

题意:

给出一张图,然后给出一个序列,修改序列中一些数字,要求使这个序列相邻的两个点.要么是相同的点,要么在图中是相邻点;


思路:

dp[i][j]代表序列前i个,并且第i个的值是j ,满足这一关系,最少修改几次几次;

那么dp[i][j]  = min ( dp[i - 1][k]) (k与j是相连的);


#include
#include
#include
#include
using namespace std;

const int N = 105;
int INF = 0x3f3f3f3f;
int n1,n2,l;
int suq[2 * N];
int dp[2 * N][N];
vector v[N];

int main(){
	int t;
	scanf("%d",&t);
	while(t--) {
		memset(dp, 0 ,sizeof(dp));
		scanf("%d%d",&n1,&n2);
		for(int i = 0; i <= n1; i++) {
			v[i].clear();
			v[i].push_back(i);
		}
		int x,y;
		for(int i = 0; i < n2; i++) {
			scanf("%d%d",&x,&y);
			v[x].push_back(y);
			v[y].push_back(x);
		}
		scanf("%d",&l);
		for(int i = 1; i <= l; i++) {
			scanf("%d",&suq[i]);
		}
		for(int i = 1; i <= l; i++) {
			for(int j = 1; j <= n1; j++) {
				dp[i][j] = INF;
				for(int k = 0; k < v[j].size(); k++) {
					if(j == suq[i])
						dp[i][j] = min(dp[i][j], dp[i - 1][v[j][k]]);
					else
						dp[i][j] = min(dp[i][j], dp[i - 1][v[j][k]] + 1);
				}
			}
		}
		int m = INF;
		for(int i = 1; i <= n1; i++) {
			m = min(m, dp[l][i]);
		}
		printf("%d\n",m);
	}
	return 0;
}


你可能感兴趣的:(DP)