MySQL 和 Oracle 大数据量分页查询方法及其优化

 

MySQL大数据量分页查询方法及其优化

---方法1: 直接使用数据库提供的SQL语句
---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N
---适应场景: 适用于数据量较少的情况(元组百/千级)
---原因/缺点: 全表扫描,速度会很慢 且 有的数据库结果集返回不稳定(如某次返回1,2,3,另外的一次返回2,1,3). Limit限制的是从结果集的M位置处取出N条输出,其余抛弃.

---方法2: 建立主键或唯一索引, 利用索引(假设每页10条)
---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 WHERE id_pk > (pageNum*10) LIMIT M
---适应场景: 适用于数据量多的情况(元组数上万)
---原因: 索引扫描,速度会很快. 有朋友提出: 因为数据查询出来并不是按照pk_id排序的,所以会有漏掉数据的情况,只能方法3

---方法3: 基于索引再排序
---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 WHERE id_pk > (pageNum*10) ORDER BY id_pk ASC LIMIT M
---适应场景: 适用于数据量多的情况(元组数上万). 最好ORDER BY后的列对象是主键或唯一所以,使得ORDERBY操作能利用索引被消除但结果集是稳定的(稳定的含义,参见方法1)
---原因: 索引扫描,速度会很快. 但MySQL的排序操作,只有ASC没有DESC(DESC是假的,未来会做真正的DESC,期待...).

---方法4: 基于索引使用prepare(第一个问号表示pageNum,第二个?表示每页元组数)
---语句样式: MySQL中,可用如下方法: PREPARE stmt_name FROM SELECT * FROM 表名称 WHERE id_pk > (?* ?) ORDER BY id_pk ASC LIMIT M
---适应场景: 大数据量
---原因: 索引扫描,速度会很快. prepare语句又比一般的查询语句快一点。

---方法5: 利用MySQL支持ORDER操作可以利用索引快速定位部分元组,避免全表扫描

比如: 读第1000到1019行元组(pk是主键/唯一键).

SELECT * FROM your_table WHERE pk>=1000 ORDER BY pk ASC LIMIT 0,20

---方法6: 利用"子查询/连接+索引"快速定位元组的位置,然后再读取元组. 道理同方法5

如(id是主键/唯一键,蓝色字体时变量):

利用子查询示例:

SELECT * FROM your_table WHERE id <= 
(SELECT id FROM your_table ORDER BY id desc LIMIT ($page-1)*$pagesize ORDER BY id desc LIMIT $pagesize

利用连接示例:

SELECT * FROM your_table AS t1 
JOIN (SELECT id FROM your_table ORDER BY id desc LIMIT ($page-1)*$pagesize AS t2 
WHERE t1.id <= t2.id ORDER BY t1.id desc LIMIT $pagesize;

 

mysql大数据量使用limit分页,随着页码的增大,查询效率越低下。

测试实验

1.   直接用limit start, count分页语句, 也是我程序中用的方法:

select * from product limit start, count
当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下:

select * from product limit 10, 20   0.016秒
select * from product limit 100, 20   0.016秒
select * from product limit 1000, 20   0.047秒
select * from product limit 10000, 20   0.094秒

我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为40w看下(也就是记录的一般左右)                                    

select * from product limit 400000, 20   3.229秒

再看我们取最后一页记录的时间
select * from product limit 866613, 20   37.44秒

像这种分页最大的页码页显然这种时间是无法忍受的。

从中我们也能总结出两件事情:
1)limit语句的查询时间与起始记录的位置成正比
2)mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。

2.   对limit分页问题的性能优化方法

利用表的覆盖索引来加速分页查询
我们都知道,利用了索引查询的语句中如果只包含了那个索引列(覆盖索引),那么这种情况会查询很快。

因为利用索引查找有优化算法,且数据就在查询索引上面,不用再去找相关的数据地址了,这样节省了很多时间。另外Mysql中也有相关的索引缓存,在并发高的时候利用缓存就效果更好了。

在我们的例子中,我们知道id字段是主键,自然就包含了默认的主键索引。现在让我们看看利用覆盖索引的查询效果如何:

这次我们之间查询最后一页的数据(利用覆盖索引,只包含id列),如下:
select id from product limit 866613, 20 0.2秒
相对于查询了所有列的37.44秒,提升了大概100多倍的速度

那么如果我们也要查询所有列,有两种方法,一种是id>=的形式,另一种就是利用join,看下实际情况:

SELECT * FROM product WHERE ID > =(select id from product limit 866613, 1) limit 20
查询时间为0.2秒!

另一种写法
SELECT * FROM product a JOIN (select id from product limit 866613, 20) b ON a.ID = b.id
查询时间也很短!

3.  复合索引优化方法

MySql 性能到底能有多高?MySql 这个数据库绝对是适合dba级的高手去玩的,一般做一点1万篇新闻的小型系统怎么写都可以,用xx框架可以实现快速开发。可是数据量到了10万,百万至千万,他的性能还能那么高吗?一点小小的失误,可能造成整个系统的改写,甚至更本系统无法正常运行!好了,不那么多废话了。用事实说话,看例子:

数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引。这是一个基本的新闻系统的简单模型。现在往里面填充数据,填充10万篇新闻。最后collect 为 10万条记录,数据库表占用硬1.6G。OK ,看下面这条sql语句:

select id,title from collect limit 1000,10; 很快;基本上0.01秒就OK,再看下面的

select id,title from collect limit 90000,10; 从9万条开始分页,结果?

8-9秒完成,my god 哪出问题了?其实要优化这条数据,网上找得到答案。看下面一条语句:

select id from collect order by id limit 90000,10;

很快,0.04秒就OK。 为什么?因为用了id主键做索引当然快。网上的改法是:

select id,title from collect where id>=(select id from collect order by id limit 90000,1) limit 10;

这就是用了id做索引的结果。可是问题复杂那么一点点,就完了。看下面的语句

select id from collect where vtype=1 order by id limit 90000,10; 很慢,用了8-9秒!

到了这里我相信很多人会和我一样,有崩溃感觉!vtype 做了索引了啊?怎么会慢呢?vtype做了索引是不错,你直接

select id from collect where vtype=1 limit 1000,10;

是很快的,基本上0.05秒,可是提高90倍,从9万开始,那就是0.05*90=4.5秒的速度了。和测试结果8-9秒到了一个数量级。从这里开始有人提出了分表的思路,这个和dis #cuz 论坛是一样的思路。思路如下:

建一个索引表: t (id,title,vtype) 并设置成定长,然后做分页,分页出结果再到 collect 里面去找info 。 是否可行呢?实验下就知道了。

10万条记录到 t(id,title,vtype) 里,数据表大小20M左右。用

select id from t where vtype=1 order by id limit 90000,10;

很快了。基本上0.1-0.2秒可以跑完。为什么会这样呢?我猜想是因为collect 数据太多,所以分页要跑很长的路。limit 完全和数据表的大小有关的。其实这样做还是全表扫描,只是因为数据量小,只有10万才快。OK, 来个疯狂的实验,加到100万条,测试性能。加了10倍的数据,马上t表就到了200多M,而且是定长。还是刚才的查询语句,时间是0.1-0.2秒完成!分表性能没问题?错!因为我们的limit还是9万,所以快。给个大的,90万开始

select id from t where vtype=1 order by id limit 900000,10;

看看结果,时间是1-2秒!why ?

分表了时间还是这么长,非常之郁闷!有人说定长会提高limit的性能,开始我也以为,因为一条记录的长度是固定的,mysql 应该可以算出90万的位置才对啊?可是我们高估了mysql 的智能,他不是商务数据库,事实证明定长和非定长对limit影响不大?怪不得有人说discuz到了100万条记录就会很慢,我相信这是真的,这个和数据库设计有关!

难道MySQL 无法突破100万的限制吗???到了100万的分页就真的到了极限?

答案是: NO 为什么突破不了100万是因为不会设计mysql造成的。下面介绍非分表法,来个疯狂的测试!一张表搞定100万记录,并且10G 数据库,如何快速分页!
 
好了,我们的测试又回到 collect表,开始测试结论是:

30万数据,用分表法可行,超过30万他的速度会慢道你无法忍受!当然如果用分表+我这种方法,那是绝对完美的。但是用了我这种方法后,不用分表也可以完美解决!
 
答 案就是:复合索引! 有一次设计mysql索引的时候,无意中发现索引名字可以任取,可以选择几个字段进来,这有什么用呢?开始的

select id from collect order by id limit 90000,10;

这么快就是因为走了索引,可是如果加了where 就不走索引了。抱着试试看的想法加了 search(vtype,id) 这样的索引。然后测试

select id from collect where vtype=1 limit 90000,10; 非常快!0.04秒完成!

再测试: select id ,title from collect where vtype=1 limit 90000,10; 非常遗憾,8-9秒,没走search索引!

再测试:search(id,vtype),还是select id 这个语句,也非常遗憾,0.5秒。

综上:如果对于有where 条件,又想走索引用limit的,必须设计一个索引,将where 放第一位,limit用到的主键放第2位,而且只能select 主键!

完美解决了分页问题了。可以快速返回id就有希望优化limit , 按这样的逻辑,百万级的limit 应该在0.0x秒就可以分完。看来mysql 语句的优化和索引时非常重要的!

 

 

 

---------------------------------------------------------------分割线---------------------------------------------------------------

 

Oracle大数据常见优化查询

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。



2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0


3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。


4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20


5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3


6.下面的查询也将导致全表扫描:
select id from t where name like '%abc%'
若要提高效率,可以考虑全文检索。


7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num


8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2


9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc' // oracle总有的是substr函数。
select id from t where datediff(day,createdate,'2005-11-30')=0 //查过了确实没有datediff函数。
应改为:
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1' //
oracle 中时间应该把char 转换成 date 如: createdate >= to_date('2005-11-30','yyyy-mm-dd')


10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。(采用函数处理的字段不能利用索引

11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。


12.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...)


13.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)


14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。


15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。


16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。


17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。


18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。


19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。


20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。


21.避免频繁创建和删除临时表,以减少系统表资源的消耗。


22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。


23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。


24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。


25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。


26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。


27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。


28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。


29.尽量避免大事务操作,提高系统并发能力。


30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

31.   union操作符

union在进行表链接后会筛选掉重复的记录,所以在表链接后会对所产生的结果集进行排序运算,
删除重复的记录再返回结果。实际大部分应用中是不会产生重复的记录,最常见的是过程表与历史
表union。

这个SQL在运行时先取出两个表的结果,再用排序空间进行排序删除重复的记录,最后返回结果集,
如果表数据量大的话可能会导致用磁盘进行排序。
推荐方案:采用union ALL操作符替代union,因为union ALL操作只是简单的将两个结果合并后就返回。

 32. 尽量避免隐士类型转换

容易引起oracle索引失效的原因很多: 

1)、在索引列上使用函数。如SUBSTR,DECODE,INSTR等,对索引列进行运算.需要建立函数索引就可以解决了。 

2)新建的表还没来得及生成统计信息,分析一下就好了 

3)、基于cost的成本分析,访问的表过小,使用全表扫描的消耗小于使用索引。 

4)、使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,一般大于5%-15%就不走索引而走FTS(全表扫描)。 

5)、单独的>、<。 

6)、like "%_" 百分号在前。 

7)、单独引用复合索引里非第一位置的索引列。也就是说查询谓词并未使用组合索引的第一列,此处有一个INDEX SKIP SCAN概念

 8)、字符型字段为数字时在where条件里不添加引号。 

 9)、当变量采用的是times变量,而表的字段采用的是date变量时.或相反情况。 

10)、索引失效,可以考虑重建索引,rebuild online。 

11)、B-tree索引 is null不会走,is not null会走,位图索引 is null,is not null  都会走、联合索引 is not null 只要在建立的索引列(不分先后)都会走

12) 、在包含有null值的table列上建立索引,当时使用select count(*) from table时不会使用索引。

13)、加上hint 还不走索引,那可能是因为你要走索引的这列是nullable,虽然这列没有空值。(将字段改为not null,就会走)

 

你可能感兴趣的:(MySQL,Oracle,数据库)