在了解了深度学习的基本理论以后,可以开始不断的去深入了解背后的原理是什么。为什么图片能被计算机读取?为什么我们可以用CNN对成千上万中图片进行分类,这背后的原理是什么?在了解原理之前,因为无论是深度学习还是机器学习,背后都是有一些数学原理和公式推导的,所以掌握必备的数学知识必不可少,在加入百度AI Studio开展的强化学习的课程的过程中,百度大佬提供了这些以后需要用到的数学基础知识,正好罗列收藏整理下,以方便以后自己学习过程中需要的时候可以查看——
数据科学需要一定的数学基础,但仅仅做应用的话,如果时间不多,不用学太深,了解基本公式即可,遇到问题再查吧。
下面是常见的一些数学基础概念,建议大家收藏后再仔细阅读,遇到不懂的概念可以直接在这里查~
1.导数定义:
导数和微分的概念
f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ( 1 ) f'({{x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x} (1) f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0)(1)
或者:
f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 ( 2 ) f'({{x}_{0}})=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}} (2) f′(x0)=x→x0limx−x0f(x)−f(x0)(2)
2.左右导数导数的几何意义和物理意义
函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处的左、右导数分别定义为:
左导数:
f ′ − ( x 0 ) = lim Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 − f ( x ) − f ( x 0 ) x − x 0 , ( x = x 0 + Δ x ) {{{f}'}_{-}}({{x}_{0}})=\underset{\Delta x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}},(x={{x}_{0}}+\Delta x) f′−(x0)=Δx→0−limΔxf(x0+Δx)−f(x0)=x→x0−limx−x0f(x)−f(x0),(x=x0+Δx)
右导数:
f ′ + ( x 0 ) = lim Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 + f ( x ) − f ( x 0 ) x − x 0 {{{f}'}_{+}}({{x}_{0}})=\underset{\Delta x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}} f′+(x0)=Δx→0+limΔxf(x0+Δx)−f(x0)=x→x0+limx−x0f(x)−f(x0)
3.函数的可导性与连续性之间的关系
Th1: 函数f(x)在 x 0 x_0 x0处可微 ⇔ f ( x ) 在 x 0 处 可 导 \Leftrightarrow f(x)在x_0处可导 ⇔f(x)在x0处可导
Th2: 若 函 数 在 点 x 0 处 可 导 , 则 y = f ( x ) 在 点 x 0 处 连 续 , 反 之 则 不 成 立 。 即 函 数 连 续 不 一 定 可 导 。 若函数在点x_0处可导,则y=f(x)在点x_0处连续,反之则不成立。即函数连续不一定可导。 若函数在点x0处可导,则y=f(x)在点x0处连续,反之则不成立。即函数连续不一定可导。
Th3:
f ′ ( x 0 ) 存 在 存 在 ⇔ f ′ − ( x 0 ) = f ′ + ( x 0 ) {f}'({{x}_{0}})存在存在\Leftrightarrow {{{f}'}_{-}}({{x}_{0}})={{{f}'}_{+}}({{x}_{0}}) f′(x0)存在存在⇔f′−(x0)=f′+(x0)
4.平面曲线的切线和法线
切线方程 : y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-{{y}_{0}}=f'({{x}_{0}})(x-{{x}_{0}}) y−y0=f′(x0)(x−x0)
法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y-{{y}_{0}}=-\frac{1}{f'({{x}_{0}})}(x-{{x}_{0}}),f'({{x}_{0}})\ne 0 y−y0=−f′(x0)1(x−x0),f′(x0)=0
5.四则运算法则
设 函 数 , u = u ( x ) , v = v ( x ) ] 在 点 x 可 导 则 ( 1 ) ( u ± v ) ′ = u ′ ± v ′ d ( u ± v ) = d u ± d v ( 2 ) ( u v ) ′ = u v ′ + v u ′ d ( u v ) = u d v + v d u ( 3 ) ( u v ) ′ = v u ′ − u v ′ v 2 ( v ≠ 0 ) d ( u v ) = v d u − u d v v 2 设函数,u=u(x),v=v(x)]在点x可导则 \\ (1) (u\pm v{)}'={u}'\pm {v}' d(u\pm v)=du\pm dv \\ (2)(uv{)}'=u{v}'+v{u}' d(uv)=udv+vdu \\ (3) (\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{{{v}^{2}}}(v\ne 0) d(\frac{u}{v})=\frac{vdu-udv}{{{v}^{2}}} 设函数,u=u(x),v=v(x)]在点x可导则(1)(u±v)′=u′±v′d(u±v)=du±dv(2)(uv)′=uv′+vu′d(uv)=udv+vdu(3)(vu)′=v2vu′−uv′(v=0)d(vu)=v2vdu−udv
6.基本导数与微分表
(1) y = c ( 常 数 ) y ′ = 0 d y = 0 y=c(常数) {y}'=0 dy=0 y=c(常数)y′=0dy=0
(2) y = x α ( α 为 实 数 ) y ′ = α x α − 1 d y = α x α − 1 d x y={{x}^{\alpha }}(\alpha为实数) {y}'=\alpha {{x}^{\alpha -1}} dy=\alpha {{x}^{\alpha -1}}dx y=xα(α为实数)y′=αxα−1dy=αxα−1dx
(3) y = a x y ′ = a x ln a d y = a x ln a d x 特 例 : ( e x ) ′ = e x d ( e x ) = e x d x y={{a}^{x}} {y}'={{a}^{x}}\ln a dy={{a}^{x}}\ln adx 特例: ({{{e}}^{x}}{)}'={{{e}}^{x}} d({{{e}}^{x}})={{{e}}^{x}}dx y=axy′=axlnady=axlnadx特例:(ex)′=exd(ex)=exdx
(4) y = log a x y={{\log }_{a}}x y=logax y ′ = 1 x ln a {y}'=\frac{1}{x\ln a} y′=xlna1
d y = 1 x ln a d x dy=\frac{1}{x\ln a}dx dy=xlna1dx
特例: y = ln x y=\ln x y=lnx ( ln x ) ′ = 1 x (\ln x{)}'=\frac{1}{x} (lnx)′=x1 d ( ln x ) = 1 x d x d(\ln x)=\frac{1}{x}dx d(lnx)=x1dx
(5) y = sin x y=\sin x y=sinx
y ′ = cos x {y}'=\cos x y′=cosx d ( sin x ) = cos x d x d(\sin x)=\cos xdx d(sinx)=cosxdx
(6) y = cos x y=\cos x y=cosx
y ′ = − sin x d ( cos x ) = − sin x d x {y}'=-\sin x d(\cos x)=-\sin xdx y′=−sinxd(cosx)=−sinxdx
(7) y = tan x y=\tan x y=tanx
y ′ = 1 cos 2 x = sec 2 x {y}'=\frac{1}{{{\cos }^{2}}x}={{\sec }^{2}}x y′=cos2x1=sec2x d ( tan x ) = sec 2 x d x d(\tan x)={{\sec }^{2}}xdx d(tanx)=sec2xdx
(8) y = cot x y=\cot x y=cotx y ′ = − 1 sin 2 x = − csc 2 x {y}'=-\frac{1}{{{\sin }^{2}}x}=-{{\csc }^{2}}x y′=−sin2x1=−csc2x d ( cot x ) = − csc 2 x d x d(\cot x)=-{{\csc }^{2}}xdx d(cotx)=−csc2xdx
(9) y = sec x y=\sec x y=secx y ′ = sec x tan x {y}'=\sec x\tan x y′=secxtanx
d ( sec x ) = sec x tan x d x d(\sec x)=\sec x\tan xdx d(secx)=secxtanxdx
(10) y = csc x y=\csc x y=cscx y ′ = − csc x cot x {y}'=-\csc x\cot x y′=−cscxcotx
d ( csc x ) = − csc x cot x d x d(\csc x)=-\csc x\cot xdx d(cscx)=−cscxcotxdx
(11) y = arcsin x y=\arcsin x y=arcsinx
y ′ = 1 1 − x 2 {y}'=\frac{1}{\sqrt{1-{{x}^{2}}}} y′=1−x21
d ( arcsin x ) = 1 1 − x 2 d x d(\arcsin x)=\frac{1}{\sqrt{1-{{x}^{2}}}}dx d(arcsinx)=1−x21dx
(12) y = arccos x y=\arccos x y=arccosx
y ′ = − 1 1 − x 2 {y}'=-\frac{1}{\sqrt{1-{{x}^{2}}}} y′=−1−x21 d ( arccos x ) = − 1 1 − x 2 d x d(\arccos x)=-\frac{1}{\sqrt{1-{{x}^{2}}}}dx d(arccosx)=−1−x21dx
(13) y = arctan x y=\arctan x y=arctanx
y ′ = 1 1 + x 2 {y}'=\frac{1}{1+{{x}^{2}}} y′=1+x21 d ( arctan x ) = 1 1 + x 2 d x d(\arctan x)=\frac{1}{1+{{x}^{2}}}dx d(arctanx)=1+x21dx
(14) y = arc cot x y=\operatorname{arc}\cot x y=arccotx
y ′ = − 1 1 + x 2 {y}'=-\frac{1}{1+{{x}^{2}}} y′=−1+x21
d ( arc cot x ) = − 1 1 + x 2 d x d(\operatorname{arc}\cot x)=-\frac{1}{1+{{x}^{2}}}dx d(arccotx)=−1+x21dx
(15) y = s h x y=shx y=shx
y ′ = c h x {y}'=chx y′=chx d ( s h x ) = c h x d x d(shx)=chxdx d(shx)=chxdx
(16) y = c h x y=chx y=chx
y ′ = s h x {y}'=shx y′=shx d ( c h x ) = s h x d x d(chx)=shxdx d(chx)=shxdx
7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法
(1) 反函数的运算法则: 设 y = f ( x ) 在 点 x 的 某 邻 域 内 单 调 连 续 , 在 点 x 处 可 导 且 f ′ ( x ) ≠ 0 , 则 其 反 函 数 在 点 x 所 对 应 的 y 处 可 导 , 并 且 有 d y d x = 1 d x d y 设y=f(x)在点x的某邻域内单调连续,在点x处可导且{f}'(x)\ne 0,则其反函数在点x所对应的y处可导,并且有\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} 设y=f(x)在点x的某邻域内单调连续,在点x处可导且f′(x)=0,则其反函数在点x所对应的y处可导,并且有dxdy=dydx1
(2) 复合函数的运算法则: 若 μ = φ ( x ) 在 点 x 可 导 , 而 y = f ( μ ) 在 对 应 点 μ ( μ = φ ( x ) ) 可 导 , 则 复 合 函 数 y = f ( φ ( x ) ) 在 点 x 可 导 , 且 y ′ = f ′ ( μ ) ⋅ φ ′ ( x ) 若 \mu =\varphi(x) 在点x可导,而y=f(\mu)在对应点\mu(\mu =\varphi (x))可导,则复合函数y=f(\varphi (x))在点x可导,且{y}'={f}'(\mu )\cdot {\varphi }'(x) 若μ=φ(x)在点x可导,而y=f(μ)在对应点μ(μ=φ(x))可导,则复合函数y=f(φ(x))在点x可导,且y′=f′(μ)⋅φ′(x)
(3) 隐 函 数 导 数 d y d x 的 求 法 一 般 有 三 种 方 法 : 1 ) 方 程 两 边 对 x 求 导 , 要 记 住 y 是 x 的 函 数 , 则 y 的 函 数 是 x 的 复 合 函 数 . 例 如 1 y , y 2 , l n y , e y 等 均 是 x 的 复 合 函 数 . 隐函数导数\frac{dy}{dx}的求法一般有三种方法: 1)方程两边对x求导,要记住y是x的函数,则y的函数是x的复合函数.例如\frac{1}{y},{{y}^{2}},ln y,{{{e}}^{y}}等均是x的复合函数. 隐函数导数dxdy的求法一般有三种方法:1)方程两边对x求导,要记住y是x的函数,则y的函数是x的复合函数.例如y1,y2,lny,ey等均是x的复合函数.
对x求导应按复合函数连锁法则做.
2)公式法.由F(x,y)=0知 d y d x = − F ′ x ( x , y ) F ′ y ( x , y ) 其 中 , , 其 中 , F ′ x ( x , y ) \frac{dy}{dx}=-\frac{{{{{F}'}}_{x}}(x,y)}{{{{{F}'}}_{y}}(x,y)}其中,,其中,{{{F}'}_{x}}(x,y) dxdy=−F′y(x,y)F′x(x,y)其中,,其中,F′x(x,y),
F ′ y ( x , y ) 分 别 表 示 分 别 表 示 F ( x , y ) 对 对 x 和 和 y {{{F}'}_{y}}(x,y)分别表示分别表示F(x,y)对对x和和y F′y(x,y)分别表示分别表示F(x,y)对对x和和y的偏导数
3)利用微分形式不变性
8.常用高阶导数公式
(1) ( a x ) ( n ) = a x ln n a ( a > 0 ) ( e x ) ( n ) = e x ({{a}^{x}}){{\,}^{(n)}}={{a}^{x}}{{\ln }^{n}}a\quad (a>{0})\quad \quad ({{{e}}^{x}}){{\,}^{(n)}}={e}{{\,}^{x}} (ax)(n)=axlnna(a>0)(ex)(n)=ex
(2) ( sin k x ) ( n ) = k n sin ( k x + n ⋅ π 2 ) (\sin kx{)}{{\,}^{(n)}}={{k}^{n}}\sin (kx+n\cdot \frac{\pi }{{2}}) (sinkx)(n)=knsin(kx+n⋅2π)
(3) ( cos k x ) ( n ) = k n cos ( k x + n ⋅ π 2 ) (\cos kx{)}{{\,}^{(n)}}={{k}^{n}}\cos (kx+n\cdot \frac{\pi }{{2}}) (coskx)(n)=kncos(kx+n⋅2π)
(4) ( x m ) ( n ) = m ( m − 1 ) ⋯ ( m − n + 1 ) x m − n ({{x}^{m}}){{\,}^{(n)}}=m(m-1)\cdots (m-n+1){{x}^{m-n}} (xm)(n)=m(m−1)⋯(m−n+1)xm−n
(5) ( ln x ) ( n ) = ( − 1 ) ( n − 1 ) ( n − 1 ) ! x n (\ln x){{\,}^{(n)}}={{(-{1})}^{(n-{1})}}\frac{(n-{1})!}{{{x}^{n}}} (lnx)(n)=(−1)(n−1)xn(n−1)!
(6)莱布尼兹公式:若 u ( x ) , v ( x ) u(x)\,,v(x) u(x),v(x)均 n n n阶可导,则
( u v ) ( n ) = ∑ i = 0 n c n i u ( i ) v ( n − i ) {{(uv)}^{(n)}}=\sum\limits_{i={0}}^{n}{c_{n}^{i}{{u}^{(i)}}{{v}^{(n-i)}}} (uv)(n)=i=0∑ncniu(i)v(n−i),其中 u ( 0 ) = u {{u}^{({0})}}=u u(0)=u, v ( 0 ) = v {{v}^{({0})}}=v v(0)=v
9.微分中值定理,泰勒公式
Th1:(费马定理)
若函数 f ( x ) f(x) f(x)满足条件:
(1)函数 f ( x ) f(x) f(x)在 x 0 {{x}_{0}} x0的某邻域内有定义,并且在此邻域内恒有
f ( x ) ≤ f ( x 0 ) f(x)\le f({{x}_{0}}) f(x)≤f(x0)或 f ( x ) ≥ f ( x 0 ) f(x)\ge f({{x}_{0}}) f(x)≥f(x0),
(2) f ( x ) f(x) f(x)在 x 0 {{x}_{0}} x0处可导,则有 f ′ ( x 0 ) = 0 {f}'({{x}_{0}})=0 f′(x0)=0
Th2:(罗尔定理)
设函数 f ( x ) f(x) f(x)满足条件:
(1)在闭区间 [ a , b ] [a,b] [a,b]上连续;
(2)在 ( a , b ) (a,b) (a,b)内可导;
(3) f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b);
则在 ( a , b ) (a,b) (a,b)内一存在个$\xi $,使 f ′ ( ξ ) = 0 {f}'(\xi )=0 f′(ξ)=0
Th3: (拉格朗日中值定理)
设函数 f ( x ) f(x) f(x)满足条件:
(1)在 [ a , b ] [a,b] [a,b]上连续;
(2)在 ( a , b ) (a,b) (a,b)内可导;
则在 ( a , b ) (a,b) (a,b)内一存在个 ξ \xi ξ,使 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \frac{f(b)-f(a)}{b-a}={f}'(\xi ) b−af(b)−f(a)=f′(ξ)
Th4: (柯西中值定理)
设函数 f ( x ) f(x) f(x), g ( x ) g(x) g(x)满足条件:
(1) 在 [ a , b ] [a,b] [a,b]上连续;
(2) 在 ( a , b ) (a,b) (a,b)内可导且 f ′ ( x ) {f}'(x) f′(x), g ′ ( x ) {g}'(x) g′(x)均存在,且 g ′ ( x ) ≠ 0 {g}'(x)\ne 0 g′(x)=0
则在 ( a , b ) (a,b) (a,b)内存在一个 ξ \xi ξ,使 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{{f}'(\xi )}{{g}'(\xi )} g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ)
10.洛必达法则
法则Ⅰ ( 0 0 \frac{0}{0} 00型)
设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim x → x 0 f ( x ) = 0 , lim x → x 0 g ( x ) = 0 \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=0 x→x0limf(x)=0,x→x0limg(x)=0;
f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)在 x 0 {{x}_{0}} x0的邻域内可导,(在 x 0 {{x}_{0}} x0处可除外)且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g′(x)=0;
lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0limg′(x)f′(x)存在(或$\infty $)。
则:
lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)。
法则 I ′ {{I}'} I′ ( 0 0 \frac{0}{0} 00型)设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim x → ∞ f ( x ) = 0 , lim x → ∞ g ( x ) = 0 \underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=0 x→∞limf(x)=0,x→∞limg(x)=0;
存在一个 X > 0 X>0 X>0,当 ∣ x ∣ > X \left| x \right|>X ∣x∣>X时, f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)可导,且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g′(x)=0; lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0limg′(x)f′(x)存在(或$\infty $)。
则 lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)
法则Ⅱ( ∞ ∞ \frac{\infty }{\infty } ∞∞ 型) 设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x) 满足条件:
lim x → x 0 f ( x ) = ∞ , lim x → x 0 g ( x ) = ∞ \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=\infty,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=\infty x→x0limf(x)=∞,x→x0limg(x)=∞;
f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x) 在 x 0 {{x}_{0}} x0 的邻域内可导(在 x 0 {{x}_{0}} x0处可除外)且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g′(x)=0; lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0limg′(x)f′(x) 存在(或$\infty ) 。 则 )。 则 )。则 lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)$ 同理法则 I I ′ {I{I}'} II′ ( ∞ ∞ \frac{\infty }{\infty } ∞∞ 型)仿法则 I ′ {{I}'} I′ 可写出。
11.泰勒公式
设函数 f ( x ) f(x) f(x)在点 x 0 {{x}_{0}} x0处的某邻域内具有 n + 1 n+1 n+1阶导数,则对该邻域内异于 x 0 {{x}_{0}} x0的任意点 x x x,在 x 0 {{x}_{0}} x0与 x x x之间至少存在
一个 ξ \xi ξ,使得:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ f(x)=f({{x}_{0}})+{f}'({{x}_{0}})(x-{{x}_{0}})+\frac{1}{2!}{f}''({{x}_{0}}){{(x-{{x}_{0}})}^{2}}+\cdots f(x)=f(x0)+f′(x0)(x−x0)+2!1f′′(x0)(x−x0)2+⋯
+ f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) +\frac{{{f}^{(n)}}({{x}_{0}})}{n!}{{(x-{{x}_{0}})}^{n}}+{{R}_{n}}(x) +n!f(n)(x0)(x−x0)n+Rn(x)
其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 {{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{(x-{{x}_{0}})}^{n+1}} Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1称为 f ( x ) f(x) f(x)在点 x 0 {{x}_{0}} x0处的 n n n阶泰勒余项。
令 x 0 = 0 {{x}_{0}}=0 x0=0,则 n n n阶泰勒公式
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x)=f(0)+{f}'(0)x+\frac{1}{2!}{f}''(0){{x}^{2}}+\cdots +\frac{{{f}^{(n)}}(0)}{n!}{{x}^{n}}+{{R}_{n}}(x) f(x)=f(0)+f′(0)x+2!1f′′(0)x2+⋯+n!f(n)(0)xn+Rn(x)……(1)
其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 {{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{x}^{n+1}} Rn(x)=(n+1)!f(n+1)(ξ)xn+1,$\xi 在 0 与 在0与 在0与x$之间.(1)式称为麦克劳林公式
常用五种函数在 x 0 = 0 {{x}_{0}}=0 x0=0处的泰勒公式
(1) e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + x n + 1 ( n + 1 ) ! e ξ {{{e}}^{x}}=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+\frac{{{x}^{n+1}}}{(n+1)!}{{e}^{\xi }} ex=1+x+2!1x2+⋯+n!1xn+(n+1)!xn+1eξ
或 = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) =1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+o({{x}^{n}}) =1+x+2!1x2+⋯+n!1xn+o(xn)
(2) sin x = x − 1 3 ! x 3 + ⋯ + x n n ! sin n π 2 + x n + 1 ( n + 1 ) ! sin ( ξ + n + 1 2 π ) \sin x=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\sin (\xi +\frac{n+1}{2}\pi ) sinx=x−3!1x3+⋯+n!xnsin2nπ+(n+1)!xn+1sin(ξ+2n+1π)
或 = x − 1 3 ! x 3 + ⋯ + x n n ! sin n π 2 + o ( x n ) =x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+o({{x}^{n}}) =x−3!1x3+⋯+n!xnsin2nπ+o(xn)
(3) cos x = 1 − 1 2 ! x 2 + ⋯ + x n n ! cos n π 2 + x n + 1 ( n + 1 ) ! cos ( ξ + n + 1 2 π ) \cos x=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\cos (\xi +\frac{n+1}{2}\pi ) cosx=1−2!1x2+⋯+n!xncos2nπ+(n+1)!xn+1cos(ξ+2n+1π)
或 = 1 − 1 2 ! x 2 + ⋯ + x n n ! cos n π 2 + o ( x n ) =1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+o({{x}^{n}}) =1−2!1x2+⋯+n!xncos2nπ+o(xn)
(4) ln ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + ( − 1 ) n x n + 1 ( n + 1 ) ( 1 + ξ ) n + 1 \ln (1+x)=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+\frac{{{(-1)}^{n}}{{x}^{n+1}}}{(n+1){{(1+\xi )}^{n+1}}} ln(1+x)=x−21x2+31x3−⋯+(−1)n−1nxn+(n+1)(1+ξ)n+1(−1)nxn+1
或 = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) =x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+o({{x}^{n}}) =x−21x2+31x3−⋯+(−1)n−1nxn+o(xn)
(5) ( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n {{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}} (1+x)m=1+mx+2!m(m−1)x2+⋯+n!m(m−1)⋯(m−n+1)xn
+ m ( m − 1 ) ⋯ ( m − n + 1 ) ( n + 1 ) ! x n + 1 ( 1 + ξ ) m − n − 1 +\frac{m(m-1)\cdots (m-n+1)}{(n+1)!}{{x}^{n+1}}{{(1+\xi )}^{m-n-1}} +(n+1)!m(m−1)⋯(m−n+1)xn+1(1+ξ)m−n−1
或 ( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + ⋯ {{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots (1+x)m=1+mx+2!m(m−1)x2+⋯ , + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + o ( x n ) +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}+o({{x}^{n}}) +n!m(m−1)⋯(m−n+1)xn+o(xn)
12.函数单调性的判断
Th1: 设函数 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)区间内可导,如果对 ∀ x ∈ ( a , b ) \forall x\in (a,b) ∀x∈(a,b),都有 f ′ ( x ) > 0 f\,'(x)>0 f′(x)>0(或 f ′ ( x ) < 0 f\,'(x)<0 f′(x)<0),则函数 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内是单调增加的(或单调减少)
Th2: (取极值的必要条件)设函数 f ( x ) f(x) f(x)在 x 0 {{x}_{0}} x0处可导,且在 x 0 {{x}_{0}} x0处取极值,则 f ′ ( x 0 ) = 0 f\,'({{x}_{0}})=0 f′(x0)=0。
Th3: (取极值的第一充分条件)设函数 f ( x ) f(x) f(x)在 x 0 {{x}_{0}} x0的某一邻域内可微,且 f ′ ( x 0 ) = 0 f\,'({{x}_{0}})=0 f′(x0)=0(或 f ( x ) f(x) f(x)在 x 0 {{x}_{0}} x0处连续,但 f ′ ( x 0 ) f\,'({{x}_{0}}) f′(x0)不存在。)
(1)若当 x x x经过 x 0 {{x}_{0}} x0时, f ′ ( x ) f\,'(x) f′(x)由“+”变“-”,则 f ( x 0 ) f({{x}_{0}}) f(x0)为极大值;
(2)若当 x x x经过 x 0 {{x}_{0}} x0时, f ′ ( x ) f\,'(x) f′(x)由“-”变“+”,则 f ( x 0 ) f({{x}_{0}}) f(x0)为极小值;
(3)若 f ′ ( x ) f\,'(x) f′(x)经过 x = x 0 x={{x}_{0}} x=x0的两侧不变号,则 f ( x 0 ) f({{x}_{0}}) f(x0)不是极值。
Th4: (取极值的第二充分条件)设 f ( x ) f(x) f(x)在点 x 0 {{x}_{0}} x0处有 f ′ ′ ( x ) ≠ 0 f''(x)\ne 0 f′′(x)=0,且 f ′ ( x 0 ) = 0 f\,'({{x}_{0}})=0 f′(x0)=0,则 当 f ′ ′ ( x 0 ) < 0 f'\,'({{x}_{0}})<0 f′′(x0)<0时, f ( x 0 ) f({{x}_{0}}) f(x0)为极大值;
当 f ′ ′ ( x 0 ) > 0 f'\,'({{x}_{0}})>0 f′′(x0)>0时, f ( x 0 ) f({{x}_{0}}) f(x0)为极小值。
注:如果 f ′ ′ ( x 0 ) < 0 f'\,'({{x}_{0}})<0 f′′(x0)<0,此方法失效。
13.渐近线的求法
(1)水平渐近线 若 lim x → + ∞ f ( x ) = b \underset{x\to +\infty }{\mathop{\lim }}\,f(x)=b x→+∞limf(x)=b,或 lim x → − ∞ f ( x ) = b \underset{x\to -\infty }{\mathop{\lim }}\,f(x)=b x→−∞limf(x)=b,则
y = b y=b y=b称为函数 y = f ( x ) y=f(x) y=f(x)的水平渐近线。
(2)铅直渐近线 若 lim x → x 0 − f ( x ) = ∞ \underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=\infty x→x0−limf(x)=∞,或 lim x → x 0 + f ( x ) = ∞ \underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=\infty x→x0+limf(x)=∞,则
x = x 0 x={{x}_{0}} x=x0称为 y = f ( x ) y=f(x) y=f(x)的铅直渐近线。
(3)斜渐近线 若 a = lim x → ∞ f ( x ) x , b = lim x → ∞ [ f ( x ) − a x ] a=\underset{x\to \infty }{\mathop{\lim }}\,\frac{f(x)}{x},\quad b=\underset{x\to \infty }{\mathop{\lim }}\,[f(x)-ax] a=x→∞limxf(x),b=x→∞lim[f(x)−ax],则
y = a x + b y=ax+b y=ax+b称为 y = f ( x ) y=f(x) y=f(x)的斜渐近线。
14.函数凹凸性的判断
Th1: (凹凸性的判别定理) 若 在 I 上 f ′ ′ ( x ) < 0 ( 或 f ′ ′ ( x ) > 0 ) , 则 f ( x ) 在 I 上 是 凸 的 ( 或 凹 的 ) 。 若在I上f''(x)<0(或f''(x)>0),则f(x)在I上是凸的(或凹的)。 若在I上f′′(x)<0(或f′′(x)>0),则f(x)在I上是凸的(或凹的)。
Th2: (拐点的判别定理1)若在 x 0 处 处 f ′ ′ ( x ) = 0 , ( 或 , ( 或 f ′ ′ ( x ) 不 存 在 ) , 当 不 存 在 ) , 当 x 变 动 经 过 变 动 经 过 x 0 时 , 时 , f ′ ′ ( x ) 变 号 , 则 变 号 , 则 ( x 0 , f ( x 0 ) ) {{x}_{0}}处处f''(x)=0,(或,(或f''(x)不存在),当不存在),当x变动经过变动经过{{x}_{0}}时,时,f''(x)变号,则变号,则({{x}_{0}},f({{x}_{0}})) x0处处f′′(x)=0,(或,(或f′′(x)不存在),当不存在),当x变动经过变动经过x0时,时,f′′(x)变号,则变号,则(x0,f(x0))为拐点。
Th3: (拐点的判别定理2)设 f ( x ) f(x) f(x)在 x 0 {{x}_{0}} x0点的某邻域内有三阶导数,且 f ′ ′ ( x ) = 0 f''(x)=0 f′′(x)=0, f ′ ′ ′ ( x ) ≠ 0 f'''(x)\ne 0 f′′′(x)=0,则 ( x 0 , f ( x 0 ) ) ({{x}_{0}},f({{x}_{0}})) (x0,f(x0))为拐点。
15.弧微分
d S = 1 + y ′ 2 d x dS=\sqrt{1+y{{'}^{2}}}dx dS=1+y′2dx
16.曲率
曲线 y = f ( x ) y=f(x) y=f(x)在点 ( x , y ) (x,y) (x,y)处的曲率 k = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 k=\frac{\left| y'' \right|}{{{(1+y{{'}^{2}})}^{\tfrac{3}{2}}}} k=(1+y′2)23∣y′′∣。
对于参数方程KaTeX parse error: No such environment: align at position 15: \left\{ \begin{̲a̲l̲i̲g̲n̲}̲ & x=\varphi (…
k = ∣ φ ′ ( t ) ψ ′ ′ ( t ) − φ ′ ′ ( t ) ψ ′ ( t ) ∣ [ φ ′ 2 ( t ) + ψ ′ 2 ( t ) ] 3 2 k=\frac{\left| \varphi '(t)\psi ''(t)-\varphi ''(t)\psi '(t) \right|}{{{[\varphi {{'}^{2}}(t)+\psi {{'}^{2}}(t)]}^{\tfrac{3}{2}}}} k=[φ′2(t)+ψ′2(t)]23∣φ′(t)ψ′′(t)−φ′′(t)ψ′(t)∣。
17.曲率半径
曲 线 在 点 M 处 的 曲 率 k ( k ≠ 0 ) 与 曲 线 在 点 M 处 的 曲 率 半 径 ρ 有 如 下 关 系 : ρ = 1 k 。 曲线在点M处的曲率k(k\ne 0)与曲线在点M处的曲率半径\rho有如下关系:\rho =\frac{1}{k}。 曲线在点M处的曲率k(k=0)与曲线在点M处的曲率半径ρ有如下关系:ρ=k1。
1.行列式按行(列)展开定理
(1) 设 A = ( a i j ) n × n A = ( a_{{ij}} )_{n \times n} A=(aij)n×n,则: a i 1 A j 1 + a i 2 A j 2 + ⋯ + a i n A j n = { ∣ A ∣ , i = j 0 , i ≠ j a_{i1}A_{j1} +a_{i2}A_{j2} + \cdots + a_{{in}}A_{{jn}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases} ai1Aj1+ai2Aj2+⋯+ainAjn={∣A∣,i=j0,i=j
或 a 1 i A 1 j + a 2 i A 2 j + ⋯ + a n i A n j = { ∣ A ∣ , i = j 0 , i ≠ j a_{1i}A_{1j} + a_{2i}A_{2j} + \cdots + a_{{ni}}A_{{nj}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases} a1iA1j+a2iA2j+⋯+aniAnj={∣A∣,i=j0,i=j即 A A ∗ = A ∗ A = ∣ A ∣ E , AA^{*} = A^{*}A = \left| A \right|E, AA∗=A∗A=∣A∣E,其中: A ∗ = ( A 11 A 12 … A 1 n A 21 A 22 … A 2 n … … … … A n 1 A n 2 … A n n ) = ( A j i ) = ( A i j ) T A^{*} = \begin{pmatrix} A_{11} & A_{12} & \ldots & A_{1n} \\ A_{21} & A_{22} & \ldots & A_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ A_{n1} & A_{n2} & \ldots & A_{{nn}} \\ \end{pmatrix} = (A_{{ji}}) = {(A_{{ij}})}^{T} A∗=⎝⎜⎜⎛A11A21…An1A12A22…An2…………A1nA2n…Ann⎠⎟⎟⎞=(Aji)=(Aij)T
D n = ∣ 1 1 … 1 x 1 x 2 … x n … … … … x 1 n − 1 x 2 n − 1 … x n n − 1 ∣ = ∏ 1 ≤ j < i ≤ n ( x i − x j ) D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n - 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j}) Dn=∣∣∣∣∣∣∣∣1x1…x1n−11x2…x2n−1…………1xn…xnn−1∣∣∣∣∣∣∣∣=∏1≤j<i≤n(xi−xj)
(2) 设 A , B A,B A,B为 n n n阶方阵,则 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ = ∣ B ∣ ∣ A ∣ = ∣ B A ∣ \left| {AB} \right| = \left| A \right|\left| B \right| = \left| B \right|\left| A \right| = \left| {BA} \right| ∣AB∣=∣A∣∣B∣=∣B∣∣A∣=∣BA∣,但 ∣ A ± B ∣ = ∣ A ∣ ± ∣ B ∣ \left| A \pm B \right| = \left| A \right| \pm \left| B \right| ∣A±B∣=∣A∣±∣B∣不一定成立。
(3) ∣ k A ∣ = k n ∣ A ∣ \left| {kA} \right| = k^{n}\left| A \right| ∣kA∣=kn∣A∣, A A A为 n n n阶方阵。
(4) 设 A A A为 n n n阶方阵, ∣ A T ∣ = ∣ A ∣ ; ∣ A − 1 ∣ = ∣ A ∣ − 1 |A^{T}| = |A|;|A^{- 1}| = |A|^{- 1} ∣AT∣=∣A∣;∣A−1∣=∣A∣−1(若 A A A可逆), ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^{*}| = |A|^{n - 1} ∣A∗∣=∣A∣n−1
n ≥ 2 n \geq 2 n≥2
(5) ∣ A O O B ∣ = ∣ A C O B ∣ = ∣ A O C B ∣ = ∣ A ∣ ∣ B ∣ \left| \begin{matrix} & {A\quad O} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad C} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad O} \\ & {C\quad B} \\ \end{matrix} \right| =| A||B| ∣∣∣∣AOOB∣∣∣∣=∣∣∣∣ACOB∣∣∣∣=∣∣∣∣AOCB∣∣∣∣=∣A∣∣B∣
, A , B A,B A,B为方阵,但 ∣ O A m × m B n × n O ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \left| \begin{matrix} {O} & A_{m \times m} \\ B_{n \times n} & { O} \\ \end{matrix} \right| = ({- 1)}^{{mn}}|A||B| ∣∣∣∣OBn×nAm×mO∣∣∣∣=(−1)mn∣A∣∣B∣ 。
(6) 范德蒙行列式 D n = ∣ 1 1 … 1 x 1 x 2 … x n … … … … x 1 n − 1 x 2 n 1 … x n n − 1 ∣ = ∏ 1 ≤ j < i ≤ n ( x i − x j ) D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j}) Dn=∣∣∣∣∣∣∣∣1x1…x1n−11x2…x2n1…………1xn…xnn−1∣∣∣∣∣∣∣∣=∏1≤j<i≤n(xi−xj)
设 A A A是 n n n阶方阵, λ i ( i = 1 , 2 ⋯ , n ) \lambda_{i}(i = 1,2\cdots,n) λi(i=1,2⋯,n)是 A A A的 n n n个特征值,则
∣ A ∣ = ∏ i = 1 n λ i |A| = \prod_{i = 1}^{n}\lambda_{i} ∣A∣=∏i=1nλi
矩阵: m × n m \times n m×n个数 a i j a_{{ij}} aij排成 m m m行 n n n列的表格 [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ ⋯ a m 1 a m 2 ⋯ a m n ] \begin{bmatrix} a_{11}\quad a_{12}\quad\cdots\quad a_{1n} \\ a_{21}\quad a_{22}\quad\cdots\quad a_{2n} \\ \quad\cdots\cdots\cdots\cdots\cdots \\ a_{m1}\quad a_{m2}\quad\cdots\quad a_{{mn}} \\ \end{bmatrix} ⎣⎢⎢⎡a11a12⋯a1na21a22⋯a2n⋯⋯⋯⋯⋯am1am2⋯amn⎦⎥⎥⎤ 称为矩阵,简记为 A A A,或者 ( a i j ) m × n \left( a_{{ij}} \right)_{m \times n} (aij)m×n 。若 m = n m = n m=n,则称 A A A是 n n n阶矩阵或 n n n阶方阵。
矩阵的线性运算
1.矩阵的加法
设 A = ( a i j ) , B = ( b i j ) A = (a_{{ij}}),B = (b_{{ij}}) A=(aij),B=(bij)是两个 m × n m \times n m×n矩阵,则 m × n m \times n m×n 矩阵 C = c i j ) = a i j + b i j C = c_{{ij}}) = a_{{ij}} + b_{{ij}} C=cij)=aij+bij称为矩阵 A A A与 B B B的和,记为 A + B = C A + B = C A+B=C 。
2.矩阵的数乘
设 A = ( a i j ) A = (a_{{ij}}) A=(aij)是 m × n m \times n m×n矩阵, k k k是一个常数,则 m × n m \times n m×n矩阵 ( k a i j ) (ka_{{ij}}) (kaij)称为数 k k k与矩阵 A A A的数乘,记为 k A {kA} kA。
3.矩阵的乘法
设 A = ( a i j ) A = (a_{{ij}}) A=(aij)是 m × n m \times n m×n矩阵, B = ( b i j ) B = (b_{{ij}}) B=(bij)是 n × s n \times s n×s矩阵,那么 m × s m \times s m×s矩阵 C = ( c i j ) C = (c_{{ij}}) C=(cij),其中 c i j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i n b n j = ∑ k = 1 n a i k b k j c_{{ij}} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{{in}}b_{{nj}} = \sum_{k =1}^{n}{a_{{ik}}b_{{kj}}} cij=ai1b1j+ai2b2j+⋯+ainbnj=∑k=1naikbkj称为 A B {AB} AB的乘积,记为 C = A B C = AB C=AB 。
4. A T \mathbf{A}^{\mathbf{T}} AT、 A − 1 \mathbf{A}^{\mathbf{-1}} A−1、 A ∗ \mathbf{A}^{\mathbf{*}} A∗三者之间的关系
(1) ( A T ) T = A , ( A B ) T = B T A T , ( k A ) T = k A T , ( A ± B ) T = A T ± B T {(A^{T})}^{T} = A,{(AB)}^{T} = B^{T}A^{T},{(kA)}^{T} = kA^{T},{(A \pm B)}^{T} = A^{T} \pm B^{T} (AT)T=A,(AB)T=BTAT,(kA)T=kAT,(A±B)T=AT±BT
(2) ( A − 1 ) − 1 = A , ( A B ) − 1 = B − 1 A − 1 , ( k A ) − 1 = 1 k A − 1 , \left( A^{- 1} \right)^{- 1} = A,\left( {AB} \right)^{- 1} = B^{- 1}A^{- 1},\left( {kA} \right)^{- 1} = \frac{1}{k}A^{- 1}, (A−1)−1=A,(AB)−1=B−1A−1,(kA)−1=k1A−1,
但 ( A ± B ) − 1 = A − 1 ± B − 1 {(A \pm B)}^{- 1} = A^{- 1} \pm B^{- 1} (A±B)−1=A−1±B−1不一定成立。
(3) ( A ∗ ) ∗ = ∣ A ∣ n − 2 A ( n ≥ 3 ) \left( A^{*} \right)^{*} = |A|^{n - 2}\ A\ \ (n \geq 3) (A∗)∗=∣A∣n−2 A (n≥3), ( A B ) ∗ = B ∗ A ∗ , \left({AB} \right)^{*} = B^{*}A^{*}, (AB)∗=B∗A∗, ( k A ) ∗ = k n − 1 A ∗ ( n ≥ 2 ) \left( {kA} \right)^{*} = k^{n -1}A^{*}{\ \ }\left( n \geq 2 \right) (kA)∗=kn−1A∗ (n≥2)
但 ( A ± B ) ∗ = A ∗ ± B ∗ \left( A \pm B \right)^{*} = A^{*} \pm B^{*} (A±B)∗=A∗±B∗不一定成立。
(4) ( A − 1 ) T = ( A T ) − 1 , ( A − 1 ) ∗ = ( A A ∗ ) − 1 , ( A ∗ ) T = ( A T ) ∗ {(A^{- 1})}^{T} = {(A^{T})}^{- 1},\ \left( A^{- 1} \right)^{*} ={(AA^{*})}^{- 1},{(A^{*})}^{T} = \left( A^{T} \right)^{*} (A−1)T=(AT)−1, (A−1)∗=(AA∗)−1,(A∗)T=(AT)∗
5.有关 A ∗ \mathbf{A}^{\mathbf{*}} A∗的结论
(1) A A ∗ = A ∗ A = ∣ A ∣ E AA^{*} = A^{*}A = |A|E AA∗=A∗A=∣A∣E
(2) ∣ A ∗ ∣ = ∣ A ∣ n − 1 ( n ≥ 2 ) , ( k A ) ∗ = k n − 1 A ∗ , ( A ∗ ) ∗ = ∣ A ∣ n − 2 A ( n ≥ 3 ) |A^{*}| = |A|^{n - 1}\ (n \geq 2),\ \ \ \ {(kA)}^{*} = k^{n -1}A^{*},{{\ \ }\left( A^{*} \right)}^{*} = |A|^{n - 2}A(n \geq 3) ∣A∗∣=∣A∣n−1 (n≥2), (kA)∗=kn−1A∗, (A∗)∗=∣A∣n−2A(n≥3)
(3) 若 A A A可逆,则 A ∗ = ∣ A ∣ A − 1 , ( A ∗ ) ∗ = 1 ∣ A ∣ A A^{*} = |A|A^{- 1},{(A^{*})}^{*} = \frac{1}{|A|}A A∗=∣A∣A−1,(A∗)∗=∣A∣1A
(4) 若 A A A为 n n n阶方阵,则:
r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) < n − 1 r(A^*)=\begin{cases}n,\quad r(A)=n\\ 1,\quad r(A)=n-1\\ 0,\quad r(A)
6.有关 A − 1 \mathbf{A}^{\mathbf{- 1}} A−1的结论
A A A可逆 ⇔ A B = E ; ⇔ ∣ A ∣ ≠ 0 ; ⇔ r ( A ) = n ; \Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n; ⇔AB=E;⇔∣A∣=0;⇔r(A)=n;
⇔ A \Leftrightarrow A ⇔A可以表示为初等矩阵的乘积; ⇔ A ; ⇔ A x = 0 \Leftrightarrow A;\Leftrightarrow Ax = 0 ⇔A;⇔Ax=0。
7.有关矩阵秩的结论
(1) 秩 r ( A ) r(A) r(A)=行秩=列秩;
(2) r ( A m × n ) ≤ min ( m , n ) ; r(A_{m \times n}) \leq \min(m,n); r(Am×n)≤min(m,n);
(3) A ≠ 0 ⇒ r ( A ) ≥ 1 A \neq 0 \Rightarrow r(A) \geq 1 A=0⇒r(A)≥1;
(4) r ( A ± B ) ≤ r ( A ) + r ( B ) ; r(A \pm B) \leq r(A) + r(B); r(A±B)≤r(A)+r(B);
(5) 初等变换不改变矩阵的秩
(6) r ( A ) + r ( B ) − n ≤ r ( A B ) ≤ min ( r ( A ) , r ( B ) ) , r(A) + r(B) - n \leq r(AB) \leq \min(r(A),r(B)), r(A)+r(B)−n≤r(AB)≤min(r(A),r(B)),特别若 A B = O AB = O AB=O
则: r ( A ) + r ( B ) ≤ n r(A) + r(B) \leq n r(A)+r(B)≤n
(7) 若 A − 1 A^{- 1} A−1存在 ⇒ r ( A B ) = r ( B ) ; \Rightarrow r(AB) = r(B); ⇒r(AB)=r(B); 若 B − 1 B^{- 1} B−1存在
⇒ r ( A B ) = r ( A ) ; \Rightarrow r(AB) = r(A); ⇒r(AB)=r(A);
若 r ( A m × n ) = n ⇒ r ( A B ) = r ( B ) ; r(A_{m \times n}) = n \Rightarrow r(AB) = r(B); r(Am×n)=n⇒r(AB)=r(B); 若 r ( A m × s ) = n ⇒ r ( A B ) = r ( A ) r(A_{m \times s}) = n\Rightarrow r(AB) = r\left( A \right) r(Am×s)=n⇒r(AB)=r(A)。
(8) r ( A m × s ) = n ⇔ A x = 0 r(A_{m \times s}) = n \Leftrightarrow Ax = 0 r(Am×s)=n⇔Ax=0只有零解
8.分块求逆公式
( A O O B ) − 1 = ( A − 1 O O B − 1 ) \begin{pmatrix} A & O \\ O & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{-1} & O \\ O & B^{- 1} \\ \end{pmatrix} (AOOB)−1=(A−1OOB−1); ( A C O B ) − 1 = ( A − 1 − A − 1 C B − 1 O B − 1 ) \begin{pmatrix} A & C \\ O & B \\\end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}& - A^{- 1}CB^{- 1} \\ O & B^{- 1} \\ \end{pmatrix} (AOCB)−1=(A−1O−A−1CB−1B−1);
( A O C B ) − 1 = ( A − 1 O − B − 1 C A − 1 B − 1 ) \begin{pmatrix} A & O \\ C & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}&{O} \\ - B^{- 1}CA^{- 1} & B^{- 1} \\\end{pmatrix} (ACOB)−1=(A−1−B−1CA−1OB−1); ( O A B O ) − 1 = ( O B − 1 A − 1 O ) \begin{pmatrix} O & A \\ B & O \\ \end{pmatrix}^{- 1} =\begin{pmatrix} O & B^{- 1} \\ A^{- 1} & O \\ \end{pmatrix} (OBAO)−1=(OA−1B−1O)
这里 A A A, B B B均为可逆方阵。
1.有关向量组的线性表示
(1) α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs线性相关 ⇔ \Leftrightarrow ⇔至少有一个向量可以用其余向量线性表示。
(2) α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs线性无关, α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α