collections有的功能:
['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList', 'UserString',\
'Counter', 'OrderedDict', 'ChainMap', 'Awaitable', 'Coroutine', 'AsyncIterable', \
'AsyncIterator', 'AsyncGenerator', 'Hashable', 'Iterable', 'Iterator', 'Generator', 'Reversible', \
'Sized', 'Container', 'Callable', 'Collection', 'Set', 'MutableSet', 'Mapping', 'MutableMapping', \
'MappingView', 'KeysView', 'ItemsView', 'ValuesView', 'Sequence', 'MutableSequence', 'ByteString']
高效/便捷。
官方:python - collections
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2
给[‘x’,‘y’]这个tuple命名为point
,这个tuple中,第一个空位命名为'x'
,第二个为'y'
。
>>> isinstance(p, Point)
True
>>> isinstance(p, tuple)
True
from collections import namedtuple
Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")
print(perry)
## 输出: Animal(name='perry', age=31, type='cat')
print(perry.name)
## 输出: 'perry'
print(perry[0])
## 输出: perry
在上面的例子中,我们的元组名称是Animal,字段名称是’name’,‘age’和’type’。
要记住它是一个元组,属性值在namedtuple中是不可变的,所以下面的代码不能工作:
from collections import namedtuple
Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")
perry.age = 42
## 输出:
## Traceback (most recent call last):
## File "", line 1, in
## AttributeError: can't set attribute
namedtuple既支持tupleindex的访问方式,也支持通过属性访问
>>> p[0] + p[1]
33
>>> x, y = p
>>> x, y
(11, 22)
>>> p.x + p.y
33
namedtuple和dict的互转,严格说是与OrderedDict互转,因为_asdict返回的是一个OrderedDict
>>> d = p._asdict()
OrderedDict([('x', 11), ('y', 22)])
from collections import namedtuple
Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="Perry", age=31, type="cat")
print(perry._asdict())
## 输出: OrderedDict([('name', 'Perry'), ('age', 31), ...
>>> p2._replace(y=100) # 替换元素值
Point(x=11, y=100, z=33)
>>> p._fields # 查看对象字段
('x', 'y', 'z')
>>> Point._make(range(3)) # 通过一个序列或者可迭代对象创建一个对象
Point(x=0, y=1, z=2)
# -*- coding: utf-8 -*-
"""
比如我们用户拥有一个这样的数据结构,每一个对象是拥有三个元素的tuple。
使用namedtuple方法就可以方便的通过tuple来生成可读性更高也更好用的数据结构。
"""
from collections import namedtuple
websites = [
('Sohu', 'http://www.google.com/', u'张朝阳'),
('Sina', 'http://www.sina.com.cn/', u'王志东'),
('163', 'http://www.163.com/', u'丁磊')
]
Website = namedtuple('Website', ['name', 'url', 'founder'])
for website in websites:
website = Website._make(website)
print website
# Result:
Website(name='Sohu', url='http://www.google.com/', founder=u'\u5f20\u671d\u9633')
Website(name='Sina', url='http://www.sina.com.cn/', founder=u'\u738b\u5fd7\u4e1c')
Website(name='163', url='http://www.163.com/', founder=u'\u4e01\u78ca')
双端队列,你可以从头/尾两端添加或删除元素。
使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])
deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。
我们也可以限制这个列表的大小,当超出你设定的限制时,数据会从对队列另一端被挤出去(pop)。
最好的解释是给出一个例子:
d = deque(maxlen=30)
现在当你插入30条数据时,最左边一端的数据将从队列中删除。
你还可以从任一端扩展这个队列中的数据:
d = deque([1,2,3,4,5])
d.extendleft([0])
d.extend([6,7,8])
print(d)
## 输出: deque([0, 1, 2, 3, 4, 5, 6, 7, 8])
使用dict时,如果引用的Key不存在,就会抛出KeyError。
>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'
注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。
除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。
新添加内容:
from collections import defaultdict
colours = (
('Yasoob', 'Yellow'),
('Ali', 'Blue'),
('Arham', 'Green'),
('Ali', 'Black'),
('Yasoob', 'Red'),
('Ahmed', 'Silver'),
)
favourite_colours = defaultdict(list)
for name, colour in colours:
favourite_colours[name].append(colour)
print(favourite_colours)
当你在一个字典中对一个键进行嵌套赋值时,如果这个键不存在,会触发keyError异常。 defaultdict允许我们用一个聪明的方式绕过这个问题。 首先我分享一个使用dict触发KeyError的例子,然后提供一个使用defaultdict的解决方案。
如果是dict,会报错:
some_dict = {}
some_dict['colours']['favourite'] = "yellow"
## 异常输出:KeyError: 'colours'
如果是defaultdict,会如常运行:
import collections
tree = lambda: collections.defaultdict(tree)
some_dict = tree()
some_dict['colours']['favourite'] = "yellow"
## 运行正常
使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict:
>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
再来一个案例:
>>> p = collections.OrderedDict()
>>> p["a"]=1
>>> p["b"]=2
>>> p["c"]=3
>>> print(p)
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
循环新建:
>>> # regular unsorted dictionary
>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}
>>> # dictionary sorted by key
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])
>>> # dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])
>>> # dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])
OrderedDict提供了下面的一些api。
>>> p.
p.clear( p.fromkeys( p.items( p.move_to_end( p.popitem( p.update(
p.copy( p.get( p.keys( p.pop( p.setdefault( p.values(
注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:
>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> od.keys() # 按照插入的Key的顺序返回
['z', 'y', 'x']
单地试一下update,pop,move_to_end和clear
>>> keys=["apple", "banana", "cat"]
>>> value=[4, 5, 6]
# update
>>> p.update(zip(keys,value))
>>> p
OrderedDict([('a', 1), ('b', 2), ('c', 3), ('apple', 4), ('banana', 5), ('cat', 6)])
# pop
>>> p.pop('a')
1
>>> p
OrderedDict([('b', 2), ('c', 3), ('apple', 4), ('banana', 5), ('cat', 6)])
# popitem(last=True)
>>> d = OrderedDict({'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2})
>>> d
OrderedDict([('banana', 3), ('apple', 4), ('pear', 1), ('orange', 2)])
>>> d.popitem()
('orange', 2)
>>> d
OrderedDict([('banana', 3), ('apple', 4), ('pear', 1)])
>>> d.popitem(last=False)
('banana', 3)
>>> d
OrderedDict([('apple', 4), ('pear', 1)])
# move_to_end
>>> p.move_to_end('b')
>>> p
OrderedDict([('c', 3), ('apple', 4), ('banana', 5), ('cat', 6), ('b', 2)])
# del
>>> del(p['c'])
>>> p
OrderedDict([('apple', 4), ('banana', 5), ('cat', 6), ('b', 2)])
# clear
>>> p.clear()
>>> p
OrderedDict()
ChainMap 用来成合并多个字典,但和 update 不同,它不会改变原对象,而且效率更高。
ChainMap用来将多个dict(字典)组成一个list(只是比喻).
>>> from collections import ChainMap
>>> a = {'a': 'A', 'c': 'C'}
>>> b = {'b': 'B', 'c': 'D'}
>>> m = ChainMap(a, b)
# 构造一个ChainMap对象
>>> m
ChainMap({'a': 'A', 'c': 'C'}, {'b': 'B', 'c': 'D'})
>>> m['a']
'A'
>>> m['c'] # 获取的是第一个字典中的值
'C'
# 将m变成一个list
>>> m.maps
[{'a': 'A', 'c': 'C'}, {'b': 'B', 'c': 'D'}]
不过,如果合并的dict之中,有同一个key,那么会优先以第一个出现的为主。
同时,如何获得一个dict的keys
:
>>> chain.keys()
KeysView(ChainMap({'a': 1, 'b': 2}, {'b': 3, 'c': 4}))
>>> list(chain.keys())
['a', 'b', 'c']
>>> print(chainMap.items())
ItemsView(ChainMap({'user': 'guest', 'color': 'red'}, {'age': '18', 'name': 'drfish'}))
chainmap的更新:
# 更新a中的值也会对ChainMap对象造成影响
>>> a['c'] = 'E'
>>> m['c']
'E'
# 从m复制一个ChainMap对象,更新这个复制的对象并不会对m造成影响
>>> m2 = m.new_child()
>>> m2['c'] = 'f'
>>> m['c']
'E'
>>> a['c']
'E'
# parents属性
>>> m2.parents
ChainMap({'a': 'A', 'c': 'C'}, {'b': 'B', 'c': 'D'})
# 添加新字典
>>> dict3 = { 'h' : 5 }
>>> new_chain = chain.new_child(dict3)
参考:Python标准库——collections模块的Counter类
创建的几种方式:
>>> c = Counter() # 创建一个空的Counter类
>>> c = Counter('gallahad') # 从一个可iterable对象(list、tuple、dict、字符串等)创建
>>> c = Counter({'a': 4, 'b': 2}) # 从一个字典对象创建
>>> c = Counter(a=4, b=2) # 从一组键值对创建
使用的方式
Counter是一个简单的计数器,例如,统计字符出现的个数:
>>> from collections import Counter
>>> c = Counter()
>>> for ch in 'programming':
... c[ch] = c[ch] + 1
...
>>> c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})
#键的删除
del c["g"]
Counter实际上也是dict的一个子类,上面的结果可以看出,字符’g’、‘m’、'r’各出现了两次,其他字符各出现了一次。
使用elements()方法按照元素的出现次数返回一个iterator(迭代器),元素以任意的顺序返回,如果元素的计数小于1,将忽略它。
>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> c
Counter({'a': 4, 'b': 2, 'c': 0, 'd': -2})
>>> c.elements()
>>> next(c)
'a'
# 排序
>>> sorted(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']
使用most_common(n)返回一个list, list中包含Counter对象中出现最多前n个元素。
>>> c = Counter('abracadabra')
>>> c
Counter({'a': 5, 'b': 2, 'r': 2, 'd': 1, 'c': 1})
# 获取出现频率最高的3个字符
>>> c.most_common(3)
[('a', 5), ('b', 2), ('r', 2)]
当所访问的键不存在时,返回0,而不是KeyError;否则返回它的计数。
计数器的更新(update和subtract)
>>> c = Counter('which')
>>> c.update('witch') # 使用另一个iterable对象更新
>>> c['h']
3
>>> d = Counter('watch')
>>> c.update(d) # 使用另一个Counter对象更新
>>> c['h']
4
键的删除
>>> c = Counter("abcdcba")
>>> c
Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1})
>>> c["b"] = 0
>>> c
Counter({'a': 2, 'c': 2, 'd': 1, 'b': 0})
>>> del c["a"]
>>> c
Counter({'c': 2, 'b': 2, 'd': 1})
算术和集合操作
+、-、&、|操作也可以用于Counter。其中&和|操作分别返回两个Counter对象各元素的最小值和最大值。需要注意的是,得到的Counter对象将删除小于1的元素。
>>> c = Counter(a=3, b=1)
>>> d = Counter(a=1, b=2)
>>> c + d # c[x] + d[x]
Counter({'a': 4, 'b': 3})
>>> c - d # subtract(只保留正数计数的元素)
Counter({'a': 2})
>>> c & d # 交集: min(c[x], d[x])
Counter({'a': 1, 'b': 1})
>>> c | d # 并集: max(c[x], d[x])
Counter({'a': 3, 'b': 2})
其他常见的操作:
sum(c.values()) # 所有计数的总数
c.clear() # 重置Counter对象,注意不是删除
list(c) # 将c中的键转为列表
set(c) # 将c中的键转为set
dict(c) # 将c中的键值对转为字典
c.items() # 转为(elem, cnt)格式的列表
Counter(dict(list_of_pairs)) # 从(elem, cnt)格式的列表转换为Counter类对象
c.most_common()[:-n:-1] # 取出计数最少的n-1个元素
c += Counter() # 移除0和负值
本文内容遵从CC3.0版权协议,转载请注明:转自Pythoner
廖雪峰- collections
Python标准库之collections使用教程
Python collections使用
eastlakeside.gitbooks.io - 容器(Collections)
Python 模块简介 – collections
官方:python - collections