本章是Python高级数据结构的第一篇,由于之前没有接触过太多的Python版本的数据结构,所以在学习的过程中集百家之长和自己的见解,加以实践,学习Python。 Python中用到tuple的方法,和注意事项都以代码的形式体现,高级之处在与其可以处理特殊场景的大部分数据描述问题。
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2017-4-25 10:33
# @Author : coderManFans
# @Site : Python 高级数据结构模块
# 1.Python中的高级数据结构包括
# Collections,Array,Heapq,Bisect,Weakref,Copy,Pprint
# 2.Collections模块包含了内建类型之外的一些有用的工具,如Counter,defaultdict,OrderDict
# deque以及nametuple.其中Counter,deque以及defaultdict是最常用的类
#
# @File : collectionsDemo.py
# @Software: PyCharm
#1.Collections
#1.1 Counter()
'''
Counter继承了dict类,其中seq为可迭代对象。接收seq,并以字典的形式返回seq
中每个元素(hashable)出现的次数
Counter的应用场景:
1.统计一个单词在给定序列中一共出现了多少次
2.统计给定序列中不同单词出现的次数
'''
from collections import Counter
list1 = ['a','b','c',23,23,'a','d','b','e']
counter1 = Counter(list1)
print(counter1)
print(counter1['a'])
#1.1.1统计不同单词的数目
print(len(set(list1)))
#1.1.2对统计结果进行分组 下面的方法表示分为4组,不填默认全部分组,以列表
#存储,里面元素是tuple对象
print(counter1.most_common(4))
#1.1.3 elements()获取Counter()生成对象的所有键名,重复的几个会全部打印
# 该方法返回一个迭代器对象
keylist = counter1.elements()
print(keylist)
print(list(keylist))
#1.1.4 update(x) 更新计数器 把x的内容加入到原来计数器中
#x可以作为字符串,列表,元组,集合,但是不能作为字典,纯数字,否则报错
list2 = ['a','d','f','q',2,3,2,3,4]
print(counter1)
counter1.update(list2)
print(counter1)
#1.1.5 substract(x) 更新计数器 把x代表的次数减少1,默认减少1,(通过字典形式指定一次减少的个数)
#,不存在则减为-1,依次减,作用与update()相反
counter1.subtract('a')
print(counter1)
counter1.subtract(['a','b',2])
print(counter1)
#1.2 Deque
'''
Deque是一种由队列结构扩展而来的双端队列(double-ended queue),队列元素
能够在队列两端添加或者删除。因此还被称为头尾连接列表(head-tail linked list),当然还有另一个特殊的数据结构也实现了这个
Deque 支持线程安全的,经过优化的append和pop操作,在队列两端的相关操作都能够
达到近乎O(1)的时间复杂度。虽然list也支持类似的操作,但是它是
对定长列表的操作表现很不错,而当遇到pop(0)和insert(o,v)
这样既改变了列表的长度又改变其元素位置的操作时,其复杂度就变为O(n)了、
'''
from collections import deque
#1.2.1 定义一个双向队列(循环队列)
de1 = deque()
#默认往双向队列右边加入元素
de1.append('asdf')
print(de1)
#1.2.2 往双向队列左边加入一个元素
de1.appendleft('2323')
de1.appendleft(232324)
de1.appendleft('2323')
de1.appendleft(23)
de1.appendleft(23)
print(de1)
#1.2.3 返回指定元素在双向队列中的个数
count1 = de1.count(23)
print(count1)
#1.2.4 反转双向队列
print(de1)
de1.reverse()
print(de1)
#1.2.5 向双向队列中指定位置插入一个元素
de1.insert(2,'abced')
print(de1)
#1.2.6 用一个迭代器从右边扩展双向队列,相当于从右边批量插入
de1.extend(['a','adfasdf','asdf','asdfasd23'])
print(de1)
#1.2.7 用一个迭代器从左边扩展双向队列,相当于从左边批量插入
de1.extendleft(['2','3','2',22,';',23,233.002,23.22])
print(de1)
#1.2.8 返回从左到右遇到的第一个value的索引
index1 = de1.index('3')
print(index1)
#1.2.9 浅复制双向队列
de2 = de1.copy()
de3 = de2
de2.append('----asdfasdfa-sdf-asd-f')
print(de3)
print(de2)
#1.2.10 队列的左旋转,右旋转
#默认向右旋转n步(默认n = 1),n是负数则向左旋转
print(de1)
de1.rotate(2)
print(de1)
#1.2.11 删除并返回右边的一个元素
val1 = de1.pop()
print(val1)
#1.2.12 删除并返回左边的一个元素
val2 = de1.popleft()
print(val2)
#1.2.13 删除第一次出现的值
de1.remove('2')
print(de1)
#1.2.14 清空队列中的数据
de1.clear()
print(de1)
#------------------------------------------------------------
#1.3 collections 中的 defaultDict
'''
该类型除了在处理不存在的键的操作之外与普通的字典完全相同。当查找一个
不存在的键的操作发生时,它的default_factory会被调用,提供一个默认的值,
并且将这对键值存储下来。其他的参数同普通的字典方法dict()一致,
一个defaultdict的实例同内建dict一样拥有同样的操作
defaultdict与dict唯一的区别就是初始化默认值的问题,
defaultdict的默认值可以是空list[],或者set{},或者0
defaultdict与dict.setdefault(key,[,default])是等价的,区别是复制的时候会被覆盖
其他使用与dict没有区别
defaultdict对象在当你希望使用它存放追踪数据的时候很有用。
'''
from collections import defaultdict
list3 = [('yellow',1),('blue',2),('yellow',3),('blue',3)]
dict1 = defaultdict(list)
print(dict1)
for k,v in list3:
dict1[k].append(v)
print(dict1)
dict2 = defaultdict(set)
print(dict2)
dict3 = {}
#-----------------------------------------------------------------------------
#1.4 collections 有序字典 orderedDict的使用
'''
orderedDict是collections中的一个包,能够记录字典元素的插入顺序,常常和排序函数一起使用
来生成一个排序的字典
默认的dict是不保证顺序的,但是该类可以保证插入的顺序
该对象里的元素是字典对象,如果其顺序不同,那么则Python会认为是两个不同的对象
'''
from collections import OrderedDict
dict4 = {'ba1':3,'aple':2,'pear':23,'orga':4}
#1.4.1 按照key排序
orderdict1 = OrderedDict(sorted(dict4.items(),key = lambda t:t[0]))
print(orderdict1)
#1.4.2 按照value排序
orderdict1 = OrderedDict(sorted(dict4.items(),key = lambda t:t[1]))
print(orderdict1)
dict5 = {'a':1,'c':2,'b':3}
dict6 = {'b':3,'a':1,'c':2}
print(dict5 == dict6)
#1.4.3 注意这种方式的初始化是保证顺序的
orderdict2 = OrderedDict(dict5)
orderdict3 = OrderedDict(dict6)
print(orderdict2)
print(orderdict3)
print(orderdict3 == orderdict2)
orderdict4 = OrderedDict()
orderdict4['a'] = 123
orderdict4['b'] = 13
orderdict4['d'] = 1
orderdict5 = OrderedDict()
orderdict5['d'] = 1
orderdict5['b'] = 13
orderdict5['a'] = 123
print(orderdict4)
print(orderdict5)
print(orderdict4 == orderdict5)
#1.4.4 有序删除 每次删除最后一个,相当于内存的栈存放,后进先出,pop()是指定元素进行删除
dict7 = orderdict5.popitem()
print(dict7)
orderdict5['h'] = 'asdfasdf'
orderdict5['e'] = 'asdfasdf'
#1.4.5 将指定键值移动到最后,也就是移动到最上面
print(orderdict5)
orderdict5.move_to_end('h')
print(orderdict5)
#1.4.6 设置默认键值
orderdict5.setdefault('k','is default value,key')
print(orderdict5)
#---------------------------------------------------------------------------
#1.5 namedtuple 可命名元组的使用方式
from collections import namedtuple
'''
namedtuple继承tuple对象,namedtuple创建一个和tuple类似的对象,而且对象可以通过属性名访问元素值
tuple只通过索引去访问,namedtuple可以提供基于对象的方式通过属性名访问元素值
每个元素都有自己的名字,类似于java的Bean,C语言中的struct。
同样的,对象属性一旦确定则不可更改,tuple中的值一旦确定也不可更改
但是在使用namedtuple的时候注意属性名不能使用Python的关键字,如:class def等。
而且不能有重复的属性名称。
如果有属性冲突的情况下,可以通过namedtuple开启重命名模式
'''
#1.5.1 初始化 下面的方式相当于创建了一个Person类 里面有5个属性
personObj = namedtuple("person",'name age gender address money ')
print(type(personObj))
print(personObj)
Bob = personObj(name='Bob',age=23,gender='nan',address='beijing',money=30000.00)
#上面的代码相当于创建了一个Person对象,下面则是通过元组的方式打印该Person对象
print(Bob)
zhangsan = personObj(name='zhangsan',age=40,gender='nan',address='nanjing',money=303330.00)
#通过属性名之间访问到属性值
print(zhangsan.address+"-----"+zhangsan.gender+"----"+zhangsan.name)
#1.5.2 存在命名冲突的情况
#通过设置重命名模式为True解决命名冲突的情况
personObj2 = namedtuple("person",'name age gender address money age ',rename=True)
#第二个冲突的属性名通过: _+indexNum的方式表示,设置值的时候要通过 _+indexNum=value的方式
print(personObj2._fields)
lisi = personObj2(name='zhangsan',age=40,gender='nan',address='nanjing',money=303330.00,_5=30)
print(lisi)