基于spring boot架构和word分词器的分词检索,排序,分页实现

       本文不适合Java初学者,适合对spring boot有一定了解的同学。 文中可能涉及到一些实体类、dao类、工具类文中没有这些类大家不必在意,不影响本文的核心内容,本文重在对方法的梳理。

    word分词器maven依赖


   org.apdplat
   word
   1.3
       spring boot的常见依赖在这里我就不列举了可以见文章 基于maven的spring boot 项目porm文件配置(含定时器,数据抓取,分词器依赖配置)

       先构建一个PageUtil类用于封装分页排序方法。

package com.frank.demo.util;

import java.text.ParseException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class PageUtil {
	// 分页方法
	public static  List splitList(List list, int pageSize, int curPage) {
		List subList = new ArrayList();
		int listSize = list.size();
		int star = pageSize * curPage;
		int end = pageSize * (curPage + 1);
		if (end > listSize) {
			end = listSize;
		}
		if (star >= listSize) {
			return new ArrayList();
		}
		for (int i = star; i < end; i++) {
			subList.add(list.get(i));
		}
		return subList;
	}

	// 排序(搜索内容按照相似度高低排序)
	private static void comparator(List data) {
		Collections.sort(data, new Comparator() {
			@Overridepublic
			int compare(EtlSearchCompanyResponseDto o1, EtlSearchCompanyResponseDto o2) {
				int cp = 0;
				if (o1.getMatching() > o2.getMatching()) {
					cp = -1;
				} else if (o1.getMatching() < o2.getMatching()) {
					cp = 1;
				}
				return cp;
			}
		});
	}
}
现在构建一个SearchService请看下面代码,

package com.frank.demo.service;

//java内部工具
import java.util.Collections;
import java.util.Comparator;
import java.util.LinkedHashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;

//基于spring boot集成hibernate的标准查询
import javax.persistence.criteria.CriteriaBuilder;
import javax.persistence.criteria.CriteriaQuery;
import javax.persistence.criteria.Predicate;
import javax.persistence.criteria.Root;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Sort;
import org.springframework.data.domain.Sort.Direction;
import org.springframework.data.jpa.domain.Specification;
import org.springframework.stereotype.Service;



// 分词器
import org.apdplat.word.WordSegmenter;
import org.apdplat.word.segmentation.Word;

//用到的dao、实体类、工具类等,本文重在方法上的理解不必在意这些辅助类
import com.frank.demo.dao.EtlDataT1004Dao;
import com.frank.demo.dao.EtlDataT1009Dao;
import com.frank.demo.dao.EtlDataT1022Dao;
import com.frank.demo.dto.EtlCreatDueDiligenceRequestDto;
import com.frank.demo.dto.EtlSearchCompanyResponseDto;
import com.frank.demo.entity.EtlDataT1004;
import com.frank.demo.entity.EtlDataT1009;
import com.frank.demo.entity.EtlDataT1022;
import com.frank.demo.util.api.ApiResponse;
import com.frank.demo.util.dto.v1.PageRequestDto;
import com.frank.demo.util.PageUtil;

@Service
public class SearchService {
	@Autowired
	EtlDataT1004Dao etlDataT1004Dao;
	@Autowired
	EtlDataT1009Dao etlDataT1009Dao;
	@Autowired
	EtlDataT1022Dao etlDataT1022Dao;
	private List words;


        //本例是多数据源搜索,所以采用的是从三张表中获取相似公司名称的记录,再计算每条记录的相似度,最后统一放到list集合进行排序,最后采用内存分页返回(提示在数据量不是特别大的情景下可以这么做,如果数据量上百万,建议采用搜索引擎实现)
	public Map searchCompany(EtlCreatDueDiligenceRequestDto request, PageRequestDto page) {
		Map response = new LinkedHashMap();
		response.put(ApiResponse.KEY_MESSAGE, ApiResponse.MESSAGE_OK);
		List data = new LinkedList<>();
		// 采用分词检索按照相似度高低进行排序(数据来源于三个地方,上交所,深交所,中小型企业股权转让系统)
		words = WordSegmenter.segWithStopWords(request.getCompanyName());//通过word分词器获取分词结果
		Sort shsort = new Sort(Direction.ASC,"f8");//列用数据库对匹配结果进行一次排序
		List shdatas = etlDataT1004Dao.findAll(new Specification() {
			@Override
			public Predicate toPredicate(Root root, CriteriaQuery query, CriteriaBuilder cb) {
				List predicates = new LinkedList<>();
				for (Word word : words) {
					predicates.add(cb.like(root.get("f8").as(String.class), "%" + word.getText() + "%"));
				}
				Predicate[] p = new Predicate[predicates.size()];
				return cb.or(predicates.toArray(p));
			}
		},shsort);
		// 匹配度计算
		for (EtlDataT1004 t1004 : shdatas) {
			EtlSearchCompanyResponseDto responseDto = new EtlSearchCompanyResponseDto(t1004.getF8().split("/")[0], t1004.getF8().split("/")[1], t1004.getF1(), "1", t1004.getF9());
			int i = 0;
			for (Word word : words) {
				if (t1004.getF8().contains(word.getText())) {
					i++;
				}
			}
			responseDto.setCompanyLegal(t1004.getF11());
			responseDto.setMatching(i);
			data.add(responseDto);
		}
		Sort szsort = new Sort(Direction.ASC,"f3");
		List szDatas = etlDataT1009Dao.findAll(new Specification() {
			@Override
			public Predicate toPredicate(Root root, CriteriaQuery query, CriteriaBuilder cb) {
				List predicates = new LinkedList<>();
				for (Word word : words) {
					predicates.add(cb.or(cb.like(root.get("f3").as(String.class), "%" + word.getText() + "%")));
					predicates.add(cb.or(cb.like(root.get("f4").as(String.class), "%" + word.getText() + "%")));
				}
				Predicate[] p = new Predicate[predicates.size()];
				return cb.or(predicates.toArray(p));
			}
		},szsort);
		// 匹配度计算
		for (EtlDataT1009 t1009 : szDatas) {
			EtlSearchCompanyResponseDto responseDto = new EtlSearchCompanyResponseDto(t1009.getF3(), t1009.getF4(), t1009.getF1(), "2", t1009.getF5());
			int i = 0;
			for (Word word : words) {
				if (t1009.getF3().contains(word.getText())) {
					i++;
				} else if (t1009.getF4().contains(word.getText())) {
					i++;
				}
			}
			responseDto.setMatching(i);
			data.add(responseDto);
		}
		Sort gzsort = new Sort(Direction.ASC,"f11");
		List gzDatas = etlDataT1022Dao.findAll(new Specification() {
			@Override
			public Predicate toPredicate(Root root, CriteriaQuery query, CriteriaBuilder cb) {
				List predicates = new LinkedList<>();
				for (Word word : words) {
					predicates.add(cb.or(cb.like(root.get("f11").as(String.class), "%" + word.getText() + "%")));
					predicates.add(cb.or(cb.like(root.get("f12").as(String.class), "%" + word.getText() + "%")));
				}
				Predicate[] p = new Predicate[predicates.size()];
				return cb.or(predicates.toArray(p));
			}
		},gzsort);
		// 匹配度计算
		for (EtlDataT1022 t1022 : gzDatas) {
			EtlSearchCompanyResponseDto responseDto = new EtlSearchCompanyResponseDto(t1022.getF11(), t1022.getF12(), t1022.getF1(), "3", t1022.getF14());
			int i = 0;
			for (Word word : words) {
				if (t1022.getF11().contains(word.getText())) {
					i++;
				} else if (t1022.getF12().contains(word.getText())) {
					i++;
				}
			}
			responseDto.setCompanyLegal(t1022.getF15());
			responseDto.setMatching(i);
			data.add(responseDto);
		}
		// 排序分页
		PageUtil.searchCompanyComparator(data);
		List pages = PageUtil.splitList(data, page.getSize(), page.getPage()-1);
		response.put(ApiResponse.KEY_DATA, pages);
		Map pageMap = new LinkedHashMap<>();
		int size = data.size() / page.getSize();
		if (data.size() % page.getSize() != 0) {
			size++;
		}
		pageMap.put("pageCount", size);
		response.put(ApiResponse.KEY_PAGE, pageMap);
		return response;
	}
}

使用word分词器的朋友给个提醒,word分词器初次调用时会加载词库,所以建议大家在项目启动的时候默认去调用以下分词器的接口,这便于你在使用分词的时候不会等待很长时间,正常加载本例经测试10万级别的数据返回时间是1s内。

有疑问的朋友可以在评论中留言了,看到会第一时间回复!

喜欢朋友可以关注我的个人微信公众号哦,会同步更新相应技术,二维码见下图。


萌萌技术


你可能感兴趣的:(spring,boot,java)