- 深度学习如何入门?
nanshaws
yolov5深度学习
深度学习是机器学习的一个子领域,它基于人工神经网络的研究。入门深度学习可以分为以下几个步骤:基础知识准备:(1)掌握基础数学知识,特别是线性代数、概率论和统计学、微积分。(2)学习编程语言,Python是目前最流行的深度学习语言,因其简洁易学且有大量的库支持。(3)了解机器学习基础,包括监督学习和非监督学习的概念、模型评估与选择等。学习深度学习理论:(1)理解神经网络的基本组成,如神经元、激活函数
- 【深度学习理论】持续更新
一轮秋月
科研基础深度学习人工智能
文章目录1.统计学习理论1.统计学习理论统计学习理论,一款适合零成本搞深度学习的大冤种的方向从人类学习到机器学习的对比(学习的过程分为归纳和演绎),引出泛化和过拟合的概念。如何表示归纳的函数规律呢?以监督问题为例,需要学习X到Y的映射,先做假设空间,为了使假设空间和真实映射接近,需要损失函数来优化假设空间。学习的目的是学习数据的分布而不是每一个数据点本身,所以希望期望风险最小(期望风险即假设在数据
- 深度学习的发展史和主要应用方向
沉着冷静集中精力
深度学习人工智能
论深度学习笔者对于深度学习有着自己独特的见解…借这个机器学习课程大作业,发表一下我的观点。时光荏苒,社会的发展日新月异,越来越多的数据分析师、数据科学家倾向于对某次统计过程的分析进行研究,并把这种统计的模型称之为“人工智能”。没错,人工智能就是一个统计数据的过程。自己在学习的过程中很多时候也会怀疑,现阶段的深度学习理论究竟是不是真正的“人工智能”。人类,作为碳基生物,其如椰子般大的大脑却能存储近7
- Pytorch从零开始实战18
Liquor999
pytorch人工智能python
Pytorch从零开始实战——人脸图像生成本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——人脸图像生成环境准备模型定义开始训练可视化总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是了解并使用DCGAN
- 深度学习入门必知必会
诗雅颂
深度学习tensorflow机器学习神经网络
深度学习是机器学习领域的一个重要分支,它通过构建和训练神经网络模型来实现智能化任务。下面是入门深度学习的几个步骤:学习基础知识:了解机器学习和神经网络的基本概念,包括线性代数、概率论和统计学等数学基础知识。掌握编程技能:学习一种主流的编程语言,如Python,以及相关的库和框架,如NumPy、Pandas和TensorFlow等。这些工具将帮助你在实践中应用深度学习算法。学习深度学习理论:了解深度
- 深度学习理论方法:相似度计算
缘起性空、
深度学习人工智能神经网络
深度学习理论中的相似度计算,是衡量两个输入之间相似性或关联性的重要方法。它常用于比较输入是否相似或相关,广泛应用于推荐系统、图像识别、自然语言处理等领域。通过相似度计算,我们能更好地了解数据的内在结构和关系,从而进行更高效的数据分析和处理。例如,在自然语言处理中,利用相似度计算可以比较两个文本的语义相似度,进而实现文本分类、聚类、情感分析等任务。而在图像识别领域,借助相似度计算可以比较两个图像的相
- Pytorch从零开始实战15
Liquor999
pytorch人工智能python
Pytorch从零开始实战——ResNeXt-50算法实战本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——ResNeXt-50算法实战环境准备数据集模型选择开始训练可视化总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础
- 地球物理中的深度学习理论(DNN的架构、反向传播、梯度消失、梯度爆炸)
hhhhhhhhhhyyyyyy
深度学习
新的数据驱动技术,即深度学习(DL)引起了广泛的关注。DL能准确预测复杂系统,缓解大型地球物理应用中“维数灾难”。在未来地球物理学中涉及到DL的研究提供了几个有希望的方向,例如无监督学习(聚类)、迁移学习(利用之前标记好的数据)、多模态DL(通过DL实现和处理多元模态)、联邦学习、不确定性估计和主动学习。图1给出人工智能、机器学习、神经网络和深度学习之间的包含关系,以及深度学习方法的分类。图11、
- Pytorch从零开始实战12
Liquor999
pytorch人工智能python
Pytorch从零开始实战——DenseNet算法实战本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——DenseNet算法实战环境准备数据集模型选择开始训练可视化总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实
- 【深度学习理论】(1) 损失函数
立Sir
深度学习理论机器学习人工智能神经网络深度学习损失函数
各位同学好,最近学习了CS231N斯坦福计算机视觉公开课,讲的太精彩了,和大家分享一下。已知一张图像属于各个类别的分数,我们希望图像属于正确分类的分数是最大的,那如何定量的去衡量呢,那就是损失函数的作用了。通过比较分数与真实标签的差距,构造损失函数,就可以定量的衡量模型的分类效果,进而进行后续的模型优化和评估。构造损失函数之后,我们的目标就是将损失函数的值最小化,使用梯度下降的方法求得损失函数对于
- Pytorch从零开始实战11
Liquor999
pytorch人工智能python
Pytorch从零开始实战——ResNet-50V2算法实战本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——ResNet-50V2算法实战环境准备数据集模型选择开始训练可视化总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论
- 基于MATLAB的BP神经网络手写数字识别
matlab汪汪队
神经网络算法网络大数据编程语言
在信息化飞速发展的时代,光学字符识别是一个重要的信息录入与信息转化的手段,其中手写体数字的识别有着广泛地应用,如:邮政编码、统计报表、银行票据等等,因其广泛地应用范围,能带来巨大的经济与社会效益。本文结合深度学习理论,利用BP神经网络对手写体数字数据集MNIST进行分析,作为机器学习课程的一次实践,熟悉了目前广泛使用的Matlab工具,深入理解了神经网络的训练过程,作为非计算机专业的学生,结合该课
- Pytorch从零开始实战10
Liquor999
pytorch人工智能python
Pytorch从零开始实战——ResNet-50算法实战本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——ResNet-50算法实战环境准备数据集模型选择开始训练可视化模型预测总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论
- 深度学习理论知识入门【EM算法、VAE算法、GAN算法】和【RBM算法、MCMC算法、HMC算法】
_刘文凯_
深度学习基础深度学习算法生成对抗网络
目录深度学习理论知识入门首先,让我们了解第一个流程:现在,让我们看看第二个流程:EM算法GMM(高斯混合模型)深度学习理论知识入门首先,让我们了解第一个流程:EM(Expectation-Maximization):EM算法是一种迭代优化算法,用于在存在潜在变量的统计模型中进行参数估计。它通过交替的E步骤(Expectation,期望)和M步骤(Maximization,最大化)来最大化似然函数。
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- Pytorch从零开始实战06
Liquor999
pytorch人工智能python
Pytorch从零开始实战——明星识别本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——明星识别环境准备数据集模型选择开始训练模型可视化模型预测总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是了解如何调
- Pytorch从零开始实战08
Liquor999
pytorch人工智能python
Pytorch从零开始实战——YOLOv5-C3模块实现本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——YOLOv5-C3模块实现环境准备数据集模型选择开始训练可视化模型预测总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论
- Pytorch从零开始实战07
Liquor999
pytorch人工智能python
Pytorch从零开始实战——咖啡豆识别本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——咖啡豆识别环境准备数据集模型选择训练模型可视化模型预测其他问题总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是手
- 【深度学习】自动炼丹炉
石头inDistance
深度学习人工智能python
在玩深度学习的时候,了解到超参数对于模型的训练效果有重要的影响。优化器不同的batchsize能够影响训练速度,同时也影响训练的损失值和准确率;不同的学习率对于模型的收敛速度也有影响。因此,对于指定数据集,能够准确预测的模型往往是模型工程师大量调整训练超参数的成果。这个调整超参数的过程,俗称炼丹,因为在训练之前往往很难得知训练出来的模型究竟能提供什么样的性能。然而,随着深度学习理论的不断发展,模型
- 一文掌握Windows平台GPU深度学习开发环境部署
机器未来
这是机器未来的第2篇文章,由机器未来原创写在前面:•博客简介:专注AIoT领域,追逐未来时代的脉搏,记录路途中的技术成长!•专栏简介:记录博主从0到1掌握物体检测工作流的过程,具备自定义物体检测器的能力•面向人群:具备深度学习理论基础的学生或初级开发者•专栏计划:接下来会逐步发布跨入人工智能的系列博文,敬请期待•Python零基础快速入门系列•快速入门Python数据科学系列•人工智能开发环境搭建
- 矩阵求逆(JAVA)利用伴随矩阵
qiuwanchi
利用伴随矩阵求逆矩阵
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(利用伴随矩阵)
* @author 邱万迟
- 单例(Singleton)模式
aoyouzi
单例模式Singleton
3.1 概述 如果要保证系统里一个类最多只能存在一个实例时,我们就需要单例模式。这种情况在我们应用中经常碰到,例如缓存池,数据库连接池,线程池,一些应用服务实例等。在多线程环境中,为了保证实例的唯一性其实并不简单,这章将和读者一起探讨如何实现单例模式。 3.2
- [开源与自主研发]就算可以轻易获得外部技术支持,自己也必须研发
comsci
开源
现在国内有大量的信息技术产品,都是通过盗版,免费下载,开源,附送等方式从国外的开发者那里获得的。。。。。。
虽然这种情况带来了国内信息产业的短暂繁荣,也促进了电子商务和互联网产业的快速发展,但是实际上,我们应该清醒的看到,这些产业的核心力量是被国外的
- 页面有两个frame,怎样点击一个的链接改变另一个的内容
Array_06
UIXHTML
<a src="地址" targets="这里写你要操作的Frame的名字" />搜索
然后你点击连接以后你的新页面就会显示在你设置的Frame名字的框那里
targerts="",就是你要填写目标的显示页面位置
=====================
例如:
<frame src=&
- Struts2实现单个/多个文件上传和下载
oloz
文件上传struts
struts2单文件上传:
步骤01:jsp页面
<!--在进行文件上传时,表单提交方式一定要是post的方式,因为文件上传时二进制文件可能会很大,还有就是enctype属性,这个属性一定要写成multipart/form-data,不然就会以二进制文本上传到服务器端-->
<form action="fileUplo
- 推荐10个在线logo设计网站
362217990
logo
在线设计Logo网站。
1、http://flickr.nosv.org(这个太简单)
2、http://www.logomaker.com/?source=1.5770.1
3、http://www.simwebsol.com/ImageTool
4、http://www.logogenerator.com/logo.php?nal=1&tpl_catlist[]=2
5、ht
- jsp上传文件
香水浓
jspfileupload
1. jsp上传
Notice:
1. form表单 method 属性必须设置为 POST 方法 ,不能使用 GET 方法
2. form表单 enctype 属性需要设置为 multipart/form-data
3. form表单 action 属性需要设置为提交到后台处理文件上传的jsp文件地址或者servlet地址。例如 uploadFile.jsp 程序文件用来处理上传的文
- 我的架构经验系列文章 - 前端架构
agevs
JavaScriptWeb框架UIjQuer
框架层面:近几年前端发展很快,前端之所以叫前端因为前端是已经可以独立成为一种职业了,js也不再是十年前的玩具了,以前富客户端RIA的应用可能会用flash/flex或是silverlight,现在可以使用js来完成大部分的功能,因此js作为一门前端的支撑语言也不仅仅是进行的简单的编码,越来越多框架性的东西出现了。越来越多的开发模式转变为后端只是吐json的数据源,而前端做所有UI的事情。MVCMV
- android ksoap2 中把XML(DataSet) 当做参数传递
aijuans
android
我的android app中需要发送webservice ,于是我使用了 ksop2 进行发送,在测试过程中不是很顺利,不能正常工作.我的web service 请求格式如下
[html]
view plain
copy
<Envelope xmlns="http://schemas.
- 使用Spring进行统一日志管理 + 统一异常管理
baalwolf
spring
统一日志和异常管理配置好后,SSH项目中,代码以往散落的log.info() 和 try..catch..finally 再也不见踪影!
统一日志异常实现类:
[java]
view plain
copy
package com.pilelot.web.util;
impor
- Android SDK 国内镜像
BigBird2012
android sdk
一、镜像地址:
1、东软信息学院的 Android SDK 镜像,比配置代理下载快多了。
配置地址, http://mirrors.neusoft.edu.cn/configurations.we#android
2、北京化工大学的:
IPV4:ubuntu.buct.edu.cn
IPV4:ubuntu.buct.cn
IPV6:ubuntu.buct6.edu.cn
- HTML无害化和Sanitize模块
bijian1013
JavaScriptAngularJSLinkySanitize
一.ng-bind-html、ng-bind-html-unsafe
AngularJS非常注重安全方面的问题,它会尽一切可能把大多数攻击手段最小化。其中一个攻击手段是向你的web页面里注入不安全的HTML,然后利用它触发跨站攻击或者注入攻击。
考虑这样一个例子,假设我们有一个变量存
- [Maven学习笔记二]Maven命令
bit1129
maven
mvn compile
compile编译命令将src/main/java和src/main/resources中的代码和配置文件编译到target/classes中,不会对src/test/java中的测试类进行编译
MVN编译使用
maven-resources-plugin:2.6:resources
maven-compiler-plugin:2.5.1:compile
&nbs
- 【Java命令二】jhat
bit1129
Java命令
jhat用于分析使用jmap dump的文件,,可以将堆中的对象以html的形式显示出来,包括对象的数量,大小等等,并支持对象查询语言。 jhat默认开启监听端口7000的HTTP服务,jhat是Java Heap Analysis Tool的缩写
1. 用法:
[hadoop@hadoop bin]$ jhat -help
Usage: jhat [-stack <bool&g
- JBoss 5.1.0 GA:Error installing to Instantiated: name=AttachmentStore state=Desc
ronin47
进到类似目录 server/default/conf/bootstrap,打开文件 profile.xml找到: Xml代码<bean
name="AttachmentStore"
class="org.jboss.system.server.profileservice.repository.AbstractAtta
- 写给初学者的6条网页设计安全配色指南
brotherlamp
UIui自学ui视频ui教程ui资料
网页设计中最基本的原则之一是,不管你花多长时间创造一个华丽的设计,其最终的角色都是这场秀中真正的明星——内容的衬托
我仍然清楚地记得我最早的一次美术课,那时我还是一个小小的、对凡事都充满渴望的孩子,我摆放出一大堆漂亮的彩色颜料。我仍然记得当我第一次看到原色与另一种颜色混合变成第二种颜色时的那种兴奋,并且我想,既然两种颜色能创造出一种全新的美丽色彩,那所有颜色
- 有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。写一个函数实现。复杂度是什么。
bylijinnan
java算法面试
import java.util.Random;
import java.util.Set;
import java.util.TreeSet;
/**
* http://weibo.com/1915548291/z7HtOF4sx
* #面试题#有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。
* 写一个函数实现。复杂度是什么
- struts2获得request、session、application方式
chiangfai
application
1、与Servlet API解耦的访问方式。
a.Struts2对HttpServletRequest、HttpSession、ServletContext进行了封装,构造了三个Map对象来替代这三种对象要获取这三个Map对象,使用ActionContext类。
----->
package pro.action;
import java.util.Map;
imp
- 改变python的默认语言设置
chenchao051
python
import sys
sys.getdefaultencoding()
可以测试出默认语言,要改变的话,需要在python lib的site-packages文件夹下新建:
sitecustomize.py, 这个文件比较特殊,会在python启动时来加载,所以就可以在里面写上:
import sys
sys.setdefaultencoding('utf-8')
&n
- mysql导入数据load data infile用法
daizj
mysql导入数据
我们常常导入数据!mysql有一个高效导入方法,那就是load data infile 下面来看案例说明
基本语法:
load data [low_priority] [local] infile 'file_name txt' [replace | ignore]
into table tbl_name
[fields
[terminated by't']
[OPTI
- phpexcel导入excel表到数据库简单入门示例
dcj3sjt126com
PHPExcel
跟导出相对应的,同一个数据表,也是将phpexcel类放在class目录下,将Excel表格中的内容读取出来放到数据库中
<?php
error_reporting(E_ALL);
set_time_limit(0);
?>
<html>
<head>
<meta http-equiv="Content-Type"
- 22岁到72岁的男人对女人的要求
dcj3sjt126com
22岁男人对女人的要求是:一,美丽,二,性感,三,有份具品味的职业,四,极有耐性,善解人意,五,该聪明的时候聪明,六,作小鸟依人状时尽量自然,七,怎样穿都好看,八,懂得适当地撒娇,九,虽作惊喜反应,但看起来自然,十,上了床就是个无条件荡妇。 32岁的男人对女人的要求,略作修定,是:一,入得厨房,进得睡房,二,不必服侍皇太后,三,不介意浪漫蜡烛配盒饭,四,听多过说,五,不再傻笑,六,懂得独
- Spring和HIbernate对DDM设计的支持
e200702084
DAO设计模式springHibernate领域模型
A:数据访问对象
DAO和资源库在领域驱动设计中都很重要。DAO是关系型数据库和应用之间的契约。它封装了Web应用中的数据库CRUD操作细节。另一方面,资源库是一个独立的抽象,它与DAO进行交互,并提供到领域模型的“业务接口”。
资源库使用领域的通用语言,处理所有必要的DAO,并使用领域理解的语言提供对领域模型的数据访问服务。
- NoSql 数据库的特性比较
geeksun
NoSQL
Redis 是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。目前由VMware主持开发工作。
1. 数据模型
作为Key-value型数据库,Redis也提供了键(Key)和值(Value)的映射关系。除了常规的数值或字符串,Redis的键值还可以是以下形式之一:
Lists (列表)
Sets
- 使用 Nginx Upload Module 实现上传文件功能
hongtoushizi
nginx
转载自: http://www.tuicool.com/wx/aUrAzm
普通网站在实现文件上传功能的时候,一般是使用Python,Java等后端程序实现,比较麻烦。Nginx有一个Upload模块,可以非常简单的实现文件上传功能。此模块的原理是先把用户上传的文件保存到临时文件,然后在交由后台页面处理,并且把文件的原名,上传后的名称,文件类型,文件大小set到页面。下
- spring-boot-web-ui及thymeleaf基本使用
jishiweili
springthymeleaf
视图控制层代码demo如下:
@Controller
@RequestMapping("/")
public class MessageController {
private final MessageRepository messageRepository;
@Autowired
public MessageController(Mes
- 数据源架构模式之活动记录
home198979
PHP架构活动记录数据映射
hello!架构
一、概念
活动记录(Active Record):一个对象,它包装数据库表或视图中某一行,封装数据库访问,并在这些数据上增加了领域逻辑。
对象既有数据又有行为。活动记录使用直截了当的方法,把数据访问逻辑置于领域对象中。
二、实现简单活动记录
活动记录在php许多框架中都有应用,如cakephp。
<?php
/**
* 行数据入口类
*
- Linux Shell脚本之自动修改IP
pda158
linuxcentosDebian脚本
作为一名
Linux SA,日常运维中很多地方都会用到脚本,而服务器的ip一般采用静态ip或者MAC绑定,当然后者比较操作起来相对繁琐,而前者我们可以设置主机名、ip信息、网关等配置。修改成特定的主机名在维护和管理方面也比较方便。如下脚本用途为:修改ip和主机名等相关信息,可以根据实际需求修改,举一反三!
#!/bin/sh
#auto Change ip netmask ga
- 开发环境搭建
独浮云
eclipsejdktomcat
最近在开发过程中,经常出现MyEclipse内存溢出等错误,需要重启的情况,好麻烦。对于一般的JAVA+TOMCAT项目开发,其实没有必要使用重量级的MyEclipse,使用eclipse就足够了。尤其是开发机器硬件配置一般的人。
&n
- 操作日期和时间的工具类
vipbooks
工具类
大家好啊,好久没有来这里发文章了,今天来逛逛,分享一篇刚写不久的操作日期和时间的工具类,希望对大家有所帮助。
/*
* @(#)DataFormatUtils.java 2010-10-10
*
* Copyright 2010 BianJing,All rights reserved.
*/
package test;
impor