《算法与数据结构》学习笔记17---散列表(3)

前言

    有没有发现,有两种数据结构,散列表和链表,经常会被放在一起使用。
    在链表篇中,提了到如何用链表来实现 LRU 缓存淘汰算法,但是链表实现的 LRU 缓存淘汰算法的时间复杂度是 O(n),通过散列表可以将这个时间复杂度降低到 O(1)。
在跳表篇,提到 Redis 的有序集合是使用跳表来实现的,跳表可以看作一种改进版的链表。Redis 有序集合不仅使用了跳表,还用到了散列表。
    除此之外,Java 编程语言中的 LinkedHashMap 这样一个常用的容器,也用到了散列表和链表两种数据结构。
    本篇来看看散列表和链表是如何组合起来使用的,以及为什么散列表和链表会经常放到一块使用。

正文

LRU缓存淘汰算法
    先来回顾一下如何通过链表实现LRU缓存淘汰算法。需要维护一个按照访问时间从大到小有序排列的链表结构。因为缓存大小有限,当缓存空间不够,需要淘汰一个数据的时候,就直接将链表头部的结点删除。当要缓存某个数据的时候,先在链表中查找这个数据。如果没有找到,则直接将数据放到链表的尾部;如果找到了,就把它移动到链表的尾部。因为查找数据需要遍历链表,所以单纯用链表实现的 LRU 缓存淘汰算法的时间复杂很高,是 O(n)。

一个缓存cache系统主要包含几个操作:

  • 往缓存中添加一个数据;
  • 从缓存中删除一个数据;
  • 在缓存中查找一个数据。

    这三个操作都要涉及“查找”操作,如果单纯地采用链表的话,时间复杂度只能是 O(n)。如果将散列表和链表两种数据结构组合使用,可以将这三个操作的时间复杂度都降低到 O(1)。
《算法与数据结构》学习笔记17---散列表(3)_第1张图片
(ps:图片来自课程。)
    使用双向链表存储数据,链表中的每个结点处理存储数据(data)、前驱指针(prev)、后继指针(next)之外,还新增了一个特殊的字段 hnext。
    hnext作用?因为散列表是通过链表法解决散列冲突的,所以每个结点会在两条链中。一个链是刚刚提到的双向链表,另一个链是散列表中的拉链。前驱和后继指针是为了将结点串在双向链表中,hnext 指针是为了将结点串在散列表的拉链中。

    了解了组合存储结构后,来看看缓存的三个操作是做到时间复杂度为O(1)的?
    查找:散列表中查找数据的时间复杂度接近 O(1),所以通过散列表,可以很快地在缓存中找到一个数据。当找到数据之后,还需要将它移动到双向链表的尾部。
    删除:需要找到数据所在的结点,然后将结点删除。借助散列表,可以在 O(1) 时间复杂度里找到要删除的结点。因为链表是双向链表,双向链表可以通过前驱指针 O(1) 时间复杂度获取前驱结点,所以在双向链表中,删除结点只需要 O(1) 的时间复杂度。
    添加:添加数据到缓存稍微有点麻烦,需要先看这个数据是否已经在缓存中。如果已经在其中,需要将其移动到双向链表的尾部;如果不在其中,还要看缓存有没有满。如果满了,则将双向链表头部的结点删除,然后再将数据放到链表的尾部;如果没有满,就直接将数据放到链表的尾部。这整个过程涉及的查找操作都可以通过散列表来完成。其他的操作,比如删除头结点、链表尾部插入数据等,都可以在 O(1) 的时间复杂度内完成。所以,这三个操作的时间复杂度都是 O(1)。

Redis有序集合
    在有序集合中,每个成员对象有两个重要的属性,key(键值)和score(分值)。不仅会通过 score 来查找数据,还会通过 key 来查找数据。比如用户积分排行榜有这样一个功能:可以通过用户的 ID 来查找积分信息,也可以通过积分区间来查找用户 ID 或者姓名信息。这里包含 ID、姓名和积分的用户信息,就是成员对象,用户 ID 就是 key,积分就是 score。
细化一下Redis有序集合的操作,是:

  • 添加一个成员对象;
  • 按照键值来删除一个成员对象;
  • 按照键值来查找一个成员对象;
  • 按照分值区间查找数据,比如查找积分在[100,356]之间的成员对象;
  • 按照分值从小到大排序成员变量。

    如果仅仅按照分值将成员对象组织成跳表的结构,那按照键值来删除、查询成员对象就会很慢,解决方法与 LRU 缓存淘汰算法的解决方法类似。可以再按照键值构建一个散列表,这样按照 key 来删除、查找一个成员对象的时间复杂度就变成了 O(1)。同时,借助跳表结构,其他操作也非常高效。
    实际上,Redis 有序集合的操作还有另外一类,也就是查找成员对象的排名(Rank)或者根据排名区间查找成员对象。

Java LinkedHashMap
下面的代码会以什么样的顺序反打印3,1,5,2这几个key呢?

HashMap<Integer, Integer> m = new LinkedHashMap<>();
m.put(3, 11);
m.put(1, 12);
m.put(5, 23);
m.put(2, 22);

for (Map.Entry e : m.entrySet()) {
  System.out.println(e.getKey());
}

    上面的代码会按照数据插入的顺序依次来打印,也就是说,打印的顺序就是 3,1,5,2。散列表中数据是经过散列函数打乱之后无规律存储的,这里是如何实现按照数据的插入顺序来遍历打印的呢?
    LinkedHashMap 是通过散列表和链表组合在一起实现的。实际上,它不仅支持按照插入顺序遍历数据,还支持按照访问顺序来遍历数据。

看现在这段代码:

// 10 是初始大小,0.75 是装载因子,true 是表示按照访问时间排序
HashMap<Integer, Integer> m = new LinkedHashMap<>(10, 0.75f, true);
m.put(3, 11);
m.put(1, 12);
m.put(5, 23);
m.put(2, 22);

m.put(3, 26);
m.get(5);

for (Map.Entry e : m.entrySet()) {
  System.out.println(e.getKey());
}

这段代码打印的结果是 1,2,3,5。

  1. 每次调用 put() 函数,往 LinkedHashMap 中添加数据的时候,都会将数据添加到链表的尾部. 3-1-5-2
  2. m.put(3,26)这行代码,再次将键值为 3 的数据放入到 LinkedHashMap 的时候,会先查找这个键值是否已经有了,然后,再将已经存在的 (3,11) 删除,并且将新的 (3,26) 放到链表的尾部。1-5-2-3
  3. m.get(5)这行代码设备部到Key为5的数据的时候,将被访问到的数据移动到链表的尾部。1-2-3-5
  4. 所以最后打印出来为1,2,3,5

    LinkedHashMap 是通过双向链表和散列表这两种数据结构组合实现的。LinkedHashMap 中的“Linked”实际上是指的是双向链表,并非指用链表法解决散列冲突。

为什么散列表和链表经常一块使用?
    散列表这种数据结构虽然支持非常高效的数据插入、删除、查找操作,但是散列表中的数据都是通过散列函数打乱之后无规律存储的。也就说,它无法支持按照某种顺序快速地遍历数据。如果希望按照顺序遍历散列表中的数据,那需要将散列表中的数据拷贝到数组中,然后排序,再遍历。
    因为散列表是动态数据结构,不停地有数据的插入、删除,所以每当希望按顺序遍历散列表中的数据的时候,都需要先排序,那效率势必会很低。为了解决这个问题,我们将散列表和链表(或者跳表)结合在一起使用。

你可能感兴趣的:(数据结构与算法)