- 【人工智能】农业工程与信息技术文献推荐
lisw05
人工智能农业信息技术机器人
李升伟整理1.农业物联网与智能化管理《农业物联网导论》作者:李道亮内容简介:本书系统介绍了农业物联网的基本概念、技术架构及其在农业生产中的应用,包括传感器网络、远程监控、智能决策支持系统等。《农业信息智能获取技术》作者:岳峻、傅泽田、高文内容简介:重点探讨了如何利用信息技术获取农业数据,包括遥感技术、无人机监测和传感器网络的应用。2.农业大数据与决策支持《农业大数据:理论与实践》作者:梅方权内容简
- 智能遥感新质生产力:ChatGPT、Python和OpenCV强强联合;空天地遥感数据分析的全流程;地面数据、无人机数据、卫星数据、多源数据等处理
小艳加油
DeepSeekChatGPT遥感遥感新质生产力ChatGPTOpenCV遥感数据处理
通过系统化的模块设计和丰富的实战案例,深入理解和掌握遥感数据的处理与计算。不仅涵盖了从零基础入门Python编程、OpenCV视觉处理的基础知识,还将借助ChatGPT智能支持,引导您掌握遥感影像识别和分析的进阶技术。更为重要的是,通过15个经过精心设计的真实案例,深度参与地质监测、城市规划、农业分析、生态评估等不同场景下的遥感应用实践。层层递进、结构严谨,帮助您系统性掌握从数据预处理、图像增强、
- 【考研说】2025年研考上岸复试指南(地理学/测绘/遥感等)
小火苗GIS
考研
2024年4月,小火开设新的专题“考研说”,力求通过平台来尽可能帮助伙伴们去了解一些考研上岸的方法和经验;转眼间,又到了出分之后的复试阶段,这个阶段也至关重要。因为有的专业初试复试占比7:3,6:4,甚至5:5。面对复试这一部分,很多小伙伴会感到迷茫无措焦虑,主要包括以下方面。(1)不了解所报学校复试的专业课方面侧重点是哪些;(2)需要准备哪些方面的复试技巧,更加从容展现;(3)要不要考虑提前联系
- 矢量化的步骤
create_right
GIS
1、扫描地图矢量化是把栅格数据转换成矢量数据的处理过程。扫描是纸质地图矢量化的第一步,它将纸质地图转化为计算机可以识别的数字形式。2、图像预处理图像预处理主要是消除图像中无关的信息,恢复有用的真实信息。图像预处理一般包括去噪声、几何纠正、投影变换等。1、几何校正由于地图受介质或存放条件等因素的影响,地图的纸张容易发生变形,或者遥感影像本身就存在着几何变形。几何校正最常用的方法是仿射变换法。2、投影
- 顶配版SAM:由分割一切迈向感知一切
猛码Memmat
prompt人工智能计算机视觉语义分割prompt
文章目录0.前言1.论文地址1.1项目&代码1.2模型地址1.3Demo2.模型介绍2.1亮点2.2方法3.量化结果、可视化展示Reference0.前言现有的视觉分割基础模型,如SAM及其变体,集中优势在形状、边缘等初级定位感知,或依赖外部模型完成更高级的语义理解任务。然而,迈向更高效的视觉感知则需要在单个模型中实现全面的视觉理解,以助力于更广泛的应用场景,如自动驾驶、安防监控、遥感以及医学图像
- 文章精读篇——用于遥感小样本语义分割的可学习Prompt
LiXiang like coding吗
学习prompt人工智能
题目:LearnablePromptforFew-ShotSemanticSegmentationinRemoteSensingDomain会议:CVPR2024Workshop论文:10.48550/arXiv.2404.10307相关竞赛:https://codalab.lisn.upsaclay.fr/competitions/17568年份:2024任务背景小样本语义分割(Few-shot
- UNet:UNet在自然环境监测中的应用案例_2024-07-24_09-14-11.Tex
chenjj4003
游戏开发2深度学习计算机视觉人工智能性能优化游戏前端javascript
UNet:UNet在自然环境监测中的应用案例UNet模型概述UNet是一种广泛应用于图像分割任务的卷积神经网络模型,由OlafRonneberger、PhilippFischer和ThomasBrox在2015年提出。其设计初衷是为了在生物医学图像分析中进行细胞和组织的精确分割,但因其高效性和准确性,迅速在自然环境监测、遥感图像分析、卫星图像处理等领域找到了应用。架构原理UNet模型采用了一个编码
- 京区航天研究所 哪些比较好的研究所?
ctrigger
职场和发展
第一梯队:一院一部、战术武器部、10所、12所、研发部、空天部,五院501所(总体设计部)、502所、通导部、遥感部、钱室(所人均年薪35w-50w级别)第二梯队:一院14所、15所,二院未来实验室、二部、23所,三院三部、301所、水下总体部,四院四部、17所,五院总环部,九院772所,航天科技创新院(所人均年薪30w-45w级别)第三梯队:二院25所(2.5梯队)、706所、206所、空间公司
- 《深度揭秘:生成对抗网络如何重塑遥感图像分析精度》
程序猿阿伟
生成对抗网络人工智能机器学习
在当今数字化时代,遥感图像作为获取地球表面信息的重要数据源,广泛应用于城市规划、农业监测、环境评估等诸多领域。然而,如何从海量的遥感数据中提取高精度的信息,一直是学术界和工业界共同面临的挑战。生成对抗网络(GAN)的出现,为提升人工智能在遥感图像分析中的精度开辟了全新的路径。生成对抗网络:技术基石剖析生成对抗网络由生成器(Generator)和判别器(Discriminator)组成,二者通过对抗
- 《深度揭秘:生成对抗网络如何重塑遥感图像分析精度》
人工智能深度学习
在当今数字化时代,遥感图像作为获取地球表面信息的重要数据源,广泛应用于城市规划、农业监测、环境评估等诸多领域。然而,如何从海量的遥感数据中提取高精度的信息,一直是学术界和工业界共同面临的挑战。生成对抗网络(GAN)的出现,为提升人工智能在遥感图像分析中的精度开辟了全新的路径。生成对抗网络:技术基石剖析生成对抗网络由生成器(Generator)和判别器(Discriminator)组成,二者通过对抗
- python:使用gdal和numpy进行遥感时间序列最大值合成
_养乐多_
python处理遥感数据pythonnumpy开发语言
作者:CSDN@_养乐多_本文将介绍使用python编程语言,进行遥感数据时间序列最大值合成的代码。代码中使用了numpy和gdal,通过numpy广播机制实现时间序列最大值合成,并以NDVI时间序列数据为例。代码方便易运行,逻辑简单,速度快。只需要输入单波段遥感数据,就可输出最大值合成影像。输入输出如下图所示,文章目录一、完整代码一、完整代码importosimportglobimportnum
- SPIE出版|2025年遥感与信息技术学术会议(RSIT2025)
Conf2022
云计算信息与通信
会议时间:2025年5月16-18日会议地址:中国·武汉会议官网:icrsit.com会议简介2025年遥感与信息技术国际会议(RSIT2025)将于2025年5月16日至18日在中国武汉举行。RSIT2025旨在汇聚领先的研究人员、工程师和行业专家,共同探讨遥感技术及其与尖端信息技术的融合最新进展。遥感技术是通过间接方式获取地球表面信息的科学,自诞生以来已经取得了显著的发展。利用卫星影像、雷达和
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- 探索TotalSegmentator:一款强大的全场景图像分割工具
计蕴斯Lowell
探索TotalSegmentator:一款强大的全场景图像分割工具项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目简介是一个开源的、基于深度学习的全场景图像分割框架。它由开发者Wasserth创建,旨在为医学影像分析、自动驾驶、遥感图像处理等多个领域提供高效且准确的像素级分类能力。该项目的亮点在于其模型的通用性和易用性,能够处理多种
- 遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
岁月如歌,青春不败
生态遥感目标检测cnntransformer遥感遥感影像
我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。一:深度卷积网络知识1.深度学习在遥感图像识别中的范式和问题2.深度学习的历史发展历程3.机器学习,深度学习等任务的基本处理流程4.卷积神经网络的基本原理5
- 近地面无人机植被定量遥感与生理参数反演
岁月如歌,青春不败
生态遥感无人机遥感植被遥感生态科学生态模型植被科学农林
一:近十年近地面无人机植被遥感文献分析,传感器选择,观测方式及质量控制要点1.1.近十余年无人机植被遥感文献分析文献分析软件VOSviewer的使用无人机植被遥感的重点研究方向、研究机构、科学家家1.2.无人机遥感的特点及与卫星遥感的差异核心优势与四大基本特点无人机与卫星遥感影像的成像方式差异异1.3.无人机传感器类型、特点及选择消费级RGB相机的简要成像几何与光谱特点多光谱相机成像类型与核心问题
- 无人机遥感技术:从植被监测到生理参数反演的进阶之路
KY_chenzhao
无人机植被遥感参数反演
在当今的生态学和农林业研究中,无人机遥感技术已经成为获取植被信息的重要手段。它不仅能够快速覆盖大面积区域,还能提供高分辨率的多光谱和高光谱数据,为植被健康监测、生长状况评估和生理参数反演提供了强大的技术支持。今天,我们就来深入了解一下无人机遥感技术在植被定量监测中的应用。一、无人机遥感:为何备受青睐?无人机遥感技术结合了无人机的灵活性和遥感传感器的高精度,能够快速获取植被的多维度信息。与传统的卫星
- 一文读懂遥感技术在农险服务全流程的应用与价值
珈和info
遥感
农业保险作为分散农业风险、提高农业生产积极性、保障农民收入稳定的重要金融政策工具,其效能直接关系到农业生产的稳定与农村经济的繁荣。然而,传统农业保险业务在信息获取、风险评估等方面的局限性日益凸显。转型之际,科技手段应如何精准地介入到农险业务的发展中来?承保、理赔、风险评估等关键业务环节能否实现从重经验到重数据的转变?已实现商业化应用的遥感技术是否能突破局限,在成本、精度、算法等维度更贴合农险业务的
- 【案例教程】无人机遥感图像拼接及处理
weixin_贾
GIS无人机遥感无人机图像拼接多光谱Photoscan软件
无人机遥感图像采集流程:无人机遥感监测介绍无人机航线规划设计无人机飞行软件操作无人机航拍一般过程无人机遥感图像拼接软件操作:Photoscan软件介绍软件基本操作与实践遥感图像拼接的一般流程遥感图像分组拼接与点云分类无人机遥感图像拼接典型案例:基于无人机航拍的单体三维建模案例基于普通相机拍摄的单体三维建模案例基于无人机航拍的正射影像制图案例利用批处理实现无人机航拍制图案例利用地面控制点提高制图精度
- 遥感影像建筑物提取
V搜xhliang0246
人工智能计算机视觉深度学习python开发语言
遥感影像建筑物提取是一项重要的地理信息处理任务,它在城市规划、环境监测、人口估算和土地覆盖制图等领域具有广泛的应用价值。以下是对遥感影像建筑物提取的详细解析:一、数据采集数据采集是建筑物提取的基础步骤。应选择具有高空间分辨率和多光谱信息的遥感影像,以确保提取的准确性。常用的遥感影像数据包括航空影像和卫星影像:航空影像:拍摄于飞机上,具有较高的空间分辨率,适用于小区域的建筑物提取。卫星影像:拍摄于卫
- 【语义分割专题文章】
BoostingIsm
Segmentationpython
本栏聚焦在语义分割的相关算法,专栏内文章的代码均已实现。一、数据篇【遥感】【道路】篇:【语义分割】【专题系列】一、MassachusettsRoadsDataset马萨诸塞州道路数据集获取二、CNN篇Unet(2015):【语义分割】【专题系列】二、Unet语义分割代码实战PSPNet(2017):【语义分割】【专题系列】三、PSPNet语义分割代码实战Linknet(2017)FPN(Featu
- 无人机遥感在农林信息提取中的实现方法与GIS融合制图教程
岁月如歌,青春不败
生态遥感无人机农业科学林业科学GIS制图遥感生态学
遥感技术作为一种空间大数据手段,能够从多时、多维、多地等角度,获取大量的农情数据。数据具有面状、实时、非接触、无伤检测等显著优势,是智慧农业必须采用的重要技术之一。一:综合态势分析1.1研究区及作物品种分析(1)形态指标分析(2)生理生化指标分析(3)胁迫指标分析(4)产量指标分析(5)综合分析1.2无人机平台分析:析目前常用于农林行业的无人机平台。1.3无人机机载传感器分析:析目前常用于农林行业
- 无人机图像拼接数据在GIS中的处理与分析、可视化与制图;无人机航拍;无人机生态环境监测、图像处理与GIS数据分析
WangYan2022
遥感生态无人机图像处理数据分析ArcGIS生态环境监测
ArcGIS作为地理信息系统领域最主流的GIS平台软件,空间数据处理和分析功能强大,十分适用于地表空间监测数据的读写、管理、分析与可视化。本教程融合无人机生态环境监测技术和ArcGIS数据分析技术,通过具体案例分析与软件操作实践,详细介绍包括无人机多源遥感影像数据采集(可见光、多光谱、激光雷达等)、影像数据拼接、空间数据编辑、空间数据分析、空间数据专题制图等流程的一条完整作业“流水线”,期望能够为
- 如何训练自己的数据集之——无人机视觉定位数据集,视觉定位,无人机视觉定位数据集无人机图像的空间分辨率
计算机c9硕士算法工程师
数据集遥感类数据集无人机类数据集无人机卫星影像空间无人机视觉定位数据集遥感影像视觉定位
无人机视觉定位数据集,将无人机拍摄的地面俯视图与相应的遥感影像进行匹配,可以实现无人机的精确快速定位,且不会产生误差累积,能作为当前无人机组合导航系统的重要补充,无人机影像收集自国内多个地区,涵盖不同地形特征和大部分国内地区;匹配的底图影像则是从谷歌地图获取的卫星图像。数据集旨在通过提供多样化的数据来支持无人机视觉定位模型的训练和测试。该数据集包含6,742幅无人机图像和11幅卫星影像。无人机图像
- 农业信息技术知识点(一)
虫洞没有虫
农业信息技术重点总结考研笔记课程设计其他
第一章1.信息是什么?信息是信息源所发生的各种信号和消息经过传递被人们所感知、接受、认识和理解的内容的统称。2.信息技术是什么?信息技术是指获取、处理、传递、存储、使用信息的技术,是能够扩展人们的信息功能的技术。3.信息采集技术,信息处理技术,信息传递技术,信息控制技术①信息采集技术:是指能有效地扩展人类感觉器官的感知域、灵敏度、分辨力和作用范围的技术,包括传感、测量、识别和遥感遥测技术。②信息传
- GEE 训练教程——基于Sentinel-2数据的SAVI 和 NDVI 图层添加到地图上的可视化分析
此星光明
GEE教程训练开发语言sentinelgeesavindvi可视化教程
目录简介指数函数expression(expression,map)Arguments:Returns:Image代码解释代码结果简介GEE训练教程——基于Sentinel-2数据的SAVI和NDVI图层添加到地图上的可视化分析指数SAVI(Soil-AdjustedVegetationIndex)和NDVI(NormalizedDifferenceVegetationIndex)都是用于遥感数据
- 使用U-Net处理Postdam数据集进行语义分割任务 如何从准备数据到训练和评估一个基于U-Net的模型。训练使用遥感影像分析研究语义分割数据集
计算机C9硕士_算法工程师
语义分割unet
使用U-Net处理Postdam数据集进行语义分割任务如何从准备数据到训练和评估一个基于U-Net的模型。训练使用遥感影像分析研究数据集文章目录1.安装依赖2.数据准备创建自定义的数据加载器3.模型定义4.训练模型5.可视化预测结果Postdam数据集遥感影像-语义分割数据集:Postdam数据集像素大小512*512训练图片为.tif标签图片为.tif数据集(train3678张val920张)
- 遥感数据快速使用及地物含量计算
Yolo566Q
遥感经验分享遥感
更多资讯,关注公众号:Ai科研学术社;(联系方式见文章底部)随着我国高分系列、欧比特系列、自然资源卫星系列等卫星数据的获取,以及美国Headwall、芬兰SPECIM、挪威HySpex、我国双利合谱、智科远达、中科谱光等无人机数据的兴起,遥感数据越来越易得。这些多源数据,在与典型地面点结合后,将发挥巨大的理论价值,计算出具体的地物含量信息,伴随而来的创新性成果也不胜枚举。所以,本课程将手把手,一起
- “卫星-无人机-地面”遥感数据快速使用及地物含量计算的实现方法实践
梦想的初衷~
遥感生态环境无人机遥感
在与上千学员交流过程中,发现科研、生产和应用多源遥感数据时,能快速上手,发挥数据的时效性,尽快出创新性成果,是目前的学员最迫切的需求。特别是按照“遥感数据获取-处理-分析-计算-制图”全流程的答疑解惑,是对学员最具有实际帮助意义的课程内容。针对这一情况,特设计了本课程。随着我国高分系列、欧比特系列、自然资源卫星系列等卫星数据的获取,以及美国Headwall、芬兰SPECIM、挪威HySpex、我国
- “卫星-无人机-地面”遥感数据快速使用方法
小新很忙
遥感经验分享
在与上千学员交流过程中,发现科研、生产和应用多源遥感数据时,能快速上手,发挥数据的时效性,尽快出创新性成果,是目前的学员最迫切的需求。特别是按照“遥感数据获取-处理-分析-计算-制图”全流程的答疑解惑,是对学员最具有实际帮助意义的课程内容。针对这一情况,特设计了本课程。随着我国高分系列、欧比特系列、自然资源卫星系列等卫星数据的获取,以及美国Headwall、芬兰SPECIM、挪威HySpex、我国
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL