1.什么是Combiner?
在MapReduce任务中,每一个Mapper都可能产生大量的输出到Reducer,这对网络带宽和Reducer负载都有很大的压力,严重时会限制Hadoop集群的计算能力。Combiner(合并)就是为了减少Mapper和Reducer之间的数据传输而生的,添加Combiner绝不能影响最终的计算结果。
MapReduce允许用户针对Mapper阶段的输出进行一次合并,这次合并就是Combiner,主要是为了削减Mapper的输出从而减少网络带宽和Reducer之上的负载。Combiner最基本的功能就是实现本地Key的合并。一般来说,Combiner和Reducer的功能相同,Combiner相当于本地的Reducer,所以常以Reducer来作为Combiner使用。
在没有加入Combiner之前,Mapper的输出就是Reducer的输入。在Mapper和Reducer之间加入了Combiner之后,Mapper的输出就是Combiner的输入,Combiner的输出就是Reducer的输入。如果加入Combiner是可插拔的,那么该Combiner的输出类型就和Mapper的输出类型一致,该Combiner的输入类型就和Reducer的输入类型一致。
不是所有的计算场景都适合用Combiner,只有操作满足结合律的才可设置Combiner,比如求和,求最值等;而对于求中位数,求平均值等不适合用Combiner。
2.在程序中使用Combiner
示例1(求和):重写WordCount程序,在Mapper和Reducer之间加入Combiner功能。
//WordCountMapper.java
package demo.wc;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordCountMapper extends Mapper {
@Override
protected void map(LongWritable key1, Text value1, Context context) throws IOException, InterruptedException {
String str = value1.toString();
String[] words = str.split(" ");
for(String w:words){
context.write(new Text(w), new LongWritable(1));
}
}
}
//WordCountReducer.java
package demo.wc;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordCountReducer extends Reducer{
@Override
protected void reduce(Text k3, Iterable v3,Context context) throws IOException, InterruptedException {
long total = 0;
for(LongWritable v:v3){
total = total + v.get();
}
context.write(k3, new LongWritable(total));
}
}
//WordCountMain.java
package demo.wc;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCountMain {
public static void main(String[] args) throws Exception {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(WordCountMain.class);
job.setMapperClass(WordCountMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//指定任务的Combiner,这里直接使用Reducer作为Combiner。
job.setCombinerClass(WordCountReducer.class);
job.setReducerClass(WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
打包并运行程序
- 将demo.wc目录打包成wc.jar,并指定主类是WordCountMain.java
- 将wc.jar上传到服务器,/root/input/wc.jar
- 准备测试数据HDFS:/input/data.txt
- 执行程序:# hadoop jar /root/input/wc.jar /input/data.txt /output/wc
- 查看输出目录:# hdfs dfs -ls /output/wc
- 查看结果:# hdfs dfs -cat /output/wc/part-r-00000
# hdfs dfs -cat /input/data.txt
I love Beijing
I love China
Beijing is the capital of China# hadoop jar /root/input/wc.jar /input/data.txt /output/wc
......
18/11/07 23:30:13 INFO mapreduce.Job: map 0% reduce 0%
18/11/07 23:30:17 INFO mapreduce.Job: map 100% reduce 0%
18/11/07 23:30:21 INFO mapreduce.Job: map 100% reduce 100%
18/11/07 23:30:22 INFO mapreduce.Job: Job job_1540913287698_0001 completed successfully
......# hdfs dfs -ls /output/wc
Found 2 items
-rw-r--r-- 1 root supergroup 0 2018-11-07 23:30 /output/wc/_SUCCESS
-rw-r--r-- 1 root supergroup 55 2018-11-07 23:30 /output/wc/part-r-00000# hdfs dfs -cat /output/wc/part-r-00000
Beijing 2
China 2
I 2
capital 1
is 1
love 2
of 1
the 1
示例2(求最值):使用MapReduce求N个数的最大(小)值,加入Combiner。
//MaxValueMapper.java
package demo.max;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public static class MaxValueMapper extends Mapper {
private Long max = Long.MIN_VALUE;
@Override
protected void map(LongWritable key1, Text value1, Context context) throws IOException, InterruptedException {
String line = value1.toString();
long tmp = Long.parseLong(line);
if (tmp > max) {
max = tmp;
}
}
//cleanup()是指map函数执行完成之后就会调用
@Override
protected void cleanup(Context context) throws IOException, InterruptedException {
context.write(new LongWritable(max), NullWritable.get());
}
}
//MaxValueReducer.java
package demo.max;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;
public static class MaxValueReducer extends Reducer {
private Long max = Long.MIN_VALUE;
@Override
protected void reduce(LongWritable key3, Iterable value3, Context context) throws IOException, InterruptedException {
if (key3.get() > max) {
max = key.get();
}
}
//cleanup()是指reduce函数执行完成之后就会调用
@Override
protected void cleanup(Context context) throws IOException, InterruptedException {
context.write(new LongWritable(max), NullWritable.get());
}
}
//MaxValueMain.java
package demo.max;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class MaxValueMain {
public static void main(String[] args) throws Exception {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(MaxValueMain.class);
job.setMapperClass(MaxValueMapper.class);
job.setMapOutputKeyClass(LongWritable.class);
job.setMapOutputValueClass(NullWritable.class);
//指定任务的Combiner,这里直接使用Reducer作为Combiner。
job.setCombinerClass(MaxValueReducer.class);
job.setReducerClass(MaxValueReducer.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
打包并运行程序
- 将demo.max目录打包成max.jar,并指定主类是MaxValueMain.java
- 将max.jar上传到服务器,/root/input/max.jar
- 准备测试数据HDFS:/input/numbers.txt
- 执行程序:# hadoop jar /root/input/max.jar /input/data.txt /output/max
- 查看输出目录:# hdfs dfs -ls /output/max
- 查看结果:# hdfs dfs -cat /output/max/part-r-00000
# hdfs dfs -cat /input/numbers.txt
2
3
1
4
8
10
5
7
6
9# hadoop jar /root/input/max.jar /input/data.txt /output/max
......
18/11/08 00:56:13 INFO mapreduce.Job: map 0% reduce 0%
18/11/08 00:56:17 INFO mapreduce.Job: map 100% reduce 0%
18/11/08 00:56:21 INFO mapreduce.Job: map 100% reduce 100%
18/11/08 00:56:22 INFO mapreduce.Job: Job job_1540913287563_0003 completed successfully
......# hdfs dfs -ls /output/max
Found 2 items
-rw-r--r-- 1 root supergroup 0 2018-11-08 00:56 /output/wc/_SUCCESS
-rw-r--r-- 1 root supergroup 2 2018-11-08 00:56 /output/wc/part-r-00000# hdfs dfs -cat /output/max/part-r-00000
10