高斯分布的全积分

高斯分布全积分:
I = ∫ x 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = ∫ y 1 2 π σ e − ( y − μ ) 2 2 σ 2 d y I 2 = ∫ x ∫ y 1 2 π σ e − ( x − μ ) 2 2 σ 2 1 2 π σ e − ( y − μ ) 2 2 σ 2 d x d y = 1 2 π σ 2 ∫ x ∫ y e − ( x − μ ) 2 + ( y − μ ) 2 2 σ 2 d x d y \begin{aligned} I &= \int_x \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_y \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}} dy \\ I^2 &= \int_x \int_y \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}} dx dy \\ &= \frac{1}{2\pi\sigma^2} \int_x \int_y e^{-\frac{(x-\mu)^2 + (y-\mu)^2}{2\sigma^2}} dx dy \\ \end{aligned} II2=x2π σ1e2σ2(xμ)2dx=y2π σ1e2σ2(yμ)2dy=xy2π σ1e2σ2(xμ)22π σ1e2σ2(yμ)2dxdy=2πσ21xye2σ2(xμ)2+(yμ)2dxdy
做极坐标系变换 x = r cos ⁡ θ + μ , y = r sin ⁡ θ + μ x = r \cos \theta + \mu, y = r \sin \theta + \mu x=rcosθ+μ,y=rsinθ+μ,有
I 2 = 1 2 π σ 2 ∫ x ∫ y e − ( x − μ ) 2 + ( y − μ ) 2 2 σ 2 d x d y = 1 2 π σ 2 ∫ 0 2 π ∫ 0 + ∞ e − r 2 2 σ 2 r d r d θ = 1 2 π σ 2 2 π σ 2 = 1 \begin{aligned} I^2 &= \frac{1}{2\pi\sigma^2} \int_x \int_y e^{-\frac{(x-\mu)^2 + (y-\mu)^2}{2\sigma^2}} dx dy \\ &= \frac{1}{2\pi\sigma^2} \int^{2 \pi}_0 \int^{+\infin}_0 e^{-\frac{r^2}{2\sigma^2}} r dr d\theta \\ &= \frac{1}{2\pi\sigma^2} 2 \pi \sigma^2 = 1 \end{aligned} I2=2πσ21xye2σ2(xμ)2+(yμ)2dxdy=2πσ2102π0+e2σ2r2rdrdθ=2πσ212πσ2=1
又由于 I > 0 I > 0 I>0,所以 I = 1 I=1 I=1

极坐标变换涉及雅克比行列式的计算:
∣ cos ⁡ θ sin ⁡ θ − r sin ⁡ θ r cos ⁡ θ ∣ = r \begin{aligned} \left|\begin{array}{ccc} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \\ \end{array}\right| = r \end{aligned} cosθrsinθsinθrcosθ=r

二. 多元高斯分布

多元高斯分布,详见:https://zhuanlan.zhihu.com/p/36522776

∫ x 1 ⋯ ∫ x K 1 ( 2 π ) K 2 ∣ Σ ∣ 1 2 e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) d x 1 ⋯ d x K \begin{aligned} \int_{x_1} \cdots \int_{x_K} \frac{1}{(2\pi)^\frac{K}{2} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu)} dx_1 \cdots dx_K \\ \end{aligned} x1xK(2π)2KΣ211e21(xμ)TΣ1(xμ)dx1dxK
把矩阵写成标量积分:
∫ x 1 ⋯ ∫ x K 1 ( 2 π ) K 2 ∣ Σ ∣ 1 2 e − 1 2 ∑ i , j σ ^ i , j ( x i − μ i ) ( x j − μ j ) d x 1 ⋯ d x K \begin{aligned} &\int_{x_1} \cdots \int_{x_K} \frac{1}{(2\pi)^\frac{K}{2} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}\sum_{i,j} \hat\sigma_{i,j} (x_i - \mu_i) (x_j - \mu_j)} dx_1 \cdots dx_K \end{aligned} x1xK(2π)2KΣ211e21i,jσ^i,j(xiμi)(xjμj)dx1dxK
这么做是一种思路,但是做不出来。

Σ \Sigma Σ为半正定对称矩阵,设 Σ − 1 = U T U \Sigma^{-1} = U^T U Σ1=UTU, y = U ( x − μ 1 ) y = U(x - \mu_1) y=U(xμ1),由于线性变换矩阵就是雅克比矩阵,因此
d y 1 ⋯ d y K = ∣ U ∣ d x 1 ⋯ d x K dy_1 \cdots dy_K = |U| dx_1 \cdots dx_K dy1dyK=Udx1dxK
∣ Σ − 1 ∣ = ∣ U ∣ 2 |\Sigma^{-1}| = |U|^2 Σ1=U2,可知 ∣ Σ − 1 2 ∣ = ∣ Σ ∣ − 1 2 = ∣ U ∣ |\Sigma^{-\frac{1}{2}}| = |\Sigma|^{-\frac{1}{2}} = |U| Σ21=Σ21=U,因此
1 ∣ Σ ∣ 1 2 ∫ y 1 ⋯ ∫ y K 1 ( 2 π ) K 2 e − 1 2 y T y ∣ U ∣ − 1 d y 1 ⋯ d y K = 1 ∣ Σ ∣ 1 2 ∫ y 1 ⋯ ∫ y K 1 ( 2 π ) K 2 e − 1 2 ( y 1 2 + y 2 2 + ⋯ + y K 2 ) ∣ U ∣ − 1 d y 1 ⋯ d y K = 1 ∣ Σ ∣ 1 2 ∣ U ∣ − 1 ∫ y 1 1 2 π e − y 1 2 2 d y 1 ⋯ ∫ y K 1 2 π e − y K 2 2 d y K = 1 ∣ Σ ∣ 1 2 ∣ Σ ∣ 1 2 ⋅ 1 = 1 \begin{aligned} &\frac{1}{|\Sigma|^{\frac{1}{2}}} \int_{y_1} \cdots \int_{y_K} \frac{1}{(2\pi)^\frac{K}{2} } e^{-\frac{1}{2} y^Ty} |U|^{-1} dy_1 \cdots dy_K \\ &= \frac{1}{|\Sigma|^{\frac{1}{2}}} \int_{y_1} \cdots \int_{y_K} \frac{1}{(2\pi)^\frac{K}{2} } e^{-\frac{1}{2}(y_1^2 + y_2^2 + \cdots + y_K^2)} |U|^{-1} dy_1 \cdots dy_K \\ &= \frac{1}{|\Sigma|^{\frac{1}{2}}} |U|^{-1} \int_{y_1} \frac{1}{\sqrt{2\pi} } e^{-\frac{y_1^2}{2}} dy_1 \cdots \int_{y_K} \frac{1}{\sqrt{2\pi} } e^{-\frac{y_K^2}{2}} dy_K \\ &= \frac{1}{|\Sigma|^{\frac{1}{2}}} |\Sigma|^{\frac{1}{2}} \cdot 1 =1 \end{aligned} Σ211y1yK(2π)2K1e21yTyU1dy1dyK=Σ211y1yK(2π)2K1e21(y12+y22++yK2)U1dy1dyK=Σ211U1y12π 1e2y12dy1yK2π 1e2yK2dyK=Σ211Σ211=1

你可能感兴趣的:(高斯分布的全积分)