Tensorflow2.0教程27:自定义层

  一、网络层layer的常见操作

  通常机器学习模型可以表示为简单网络层的堆叠与组合,而tensorflow就提供了常见的网络层,为我们编写神经网络程序提供了便利。

  TensorFlow2推荐使用tf.keras来构建网络层,tf.keras来自原生keras,用其来构建网络具有更好的可读性和易用性。

  如,我们要构造一个简单的全连接网络,只需要指定网络的神经元个数

  layer = tf.keras.layers.Dense(100)

  # 也可以添加输入维度限制

  layer = tf.keras.layers.Dense(100, input_shape=(None, 20))

  可以在文档中查看预先存在的图层的完整列表。 它包括Dense,Conv2D,LSTM,BatchNormalization,Dropout等等。

  每个层都可以当作一个函数,然后以输入的数据作为函数的输入

  layer(tf.ones([6, 6]))

  同时我们也可以得到网络的变量、权重矩阵、偏置等

  print(layer.variables) # 包含了权重和偏置

  [

  array([[-0.18237606, 0.16415142, 0.20687856, 0.23396944, 0.09779547,

  -0.14794639, -0.10231382, -0.22263053, -0.0950674 , 0.18697281,

  ...

  -0.10450925, -0.12111329, -0.2259491 , 0.12304659, -0.04047236]],

  dtype=float32)>,

  array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

  0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

  0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

  0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

  0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

  0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],

  dtype=float32)>]

  print(layer.kernel, layer.bias) # 也可以分别取出权重和偏置

  array([[-0.18237606, 0.16415142, 0.20687856, 0.23396944, 0.09779547,

  ...

  -0.10450925, -0.12111329, -0.2259491 , 0.12304659, -0.04047236]],

  dtype=float32)>

  array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

  0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

  0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

  0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

  0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

  0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],

  dtype=float32)>

  二、实现自定义网络层

  实现自己的层的最佳方法是扩展tf.keras.Layer类并实现:

  _init_()函数,你可以在其中执行所有与输入无关的初始化

  build()函数,可以获得输入张量的形状,并可以进行其余的初始化

  call()函数,构建网络结构,进行前向传播

  实际上,你不必等到调用build()来创建网络结构,您也可以在_init_()中创建它们。 但是,在build()中创建它们的优点是它可以根据图层将要操作的输入的形状启用后期的网络构建。 另一方面,在__init__中创建变量意味着需要明确指定创建变量所需的形状。

  class MyDense(tf.keras.layers.Layer):

  def __init__(self, n_outputs):

  super(MyDense, self).__init__()

  self.n_outputs = n_outputs

  def build(self, input_shape):

  self.kernel = self.add_variable('kernel',

  shape=[int(input_shape[-1]),

  self.n_outputs])

  def call(self, input):

  return tf.matmul(input, self.kernel)

  layer = MyDense(10)

  print(layer(tf.ones([6, 5])))

  print(layer.trainable_variables)

  tf.Tensor(

  [[ 1.0200843 -0.42590106 -0.92992705 0.46160045 0.7518406 0.32543844

  0.34020287 0.08215448 0.22044104 -0.5337319 ]

  [ 1.0200843 -0.42590106 -0.92992705 0.46160045 0.7518406 0.32543844

  0.34020287 0.08215448 0.22044104 -0.5337319 ]

  [ 1.0200843 -0.42590106 -0.92992705 0.46160045 0.7518406 0.32543844

  0.34020287 0.08215448 0.22044104 -0.5337319 ]

  [ 1.0200843 -0.42590106 -0.92992705 0.46160045 0.7518406 0.32543844

  0.34020287 0.08215448 0.22044104 -0.5337319 ]

  [ 1.0200843 -0.42590106 -0.92992705 0.46160045 0.7518406 0.32543844

  0.34020287 0.08215448 0.22044104 -0.5337319 ]

  [ 1.0200843 -0.42590106 -0.92992705 0.46160045 0.7518406 0.32543844

  0.34020287 0.08215448 0.22044104 -0.5337319 ]], shape=(6, 10), dtype=float32)

  [

  array([[ 0.54810244, 0.042225 , 0.25634396, 0.1677258 , -0.0361526 ,

  0.32831818, 0.17709464, 0.46625894, 0.29662275, -0.32920587],

  [ 0.30925363, -0.426274 , -0.49862564, 0.3068235 , 0.29526353,

  0.50076336, 0.17321467, 0.21151704, -0.26317668, -0.2006711 ],

  [ 0.10354012, -0.3258371 , -0.12274069, -0.33250242, 0.46343058,

  -0.45535576, 0.5332853 , -0.37351888, -0.00410944, 0.16418225],

  [-0.4515978 , 0.04706419, -0.42583126, -0.19347438, 0.54246336,

  0.57910997, 0.01877069, 0.01255274, -0.14176458, -0.6309683 ],

  [ 0.5107859 , 0.23692083, -0.13907343, 0.51302797, -0.5131643 ,

  -0.6273973 , -0.56216246, -0.23465535, 0.332869 , 0.4629311 ]],

  dtype=float32)>]

  三、网络层组合

  机器学习模型中有很多是通过叠加不同的结构层组合而成的,如resnet的每个残差块就是“卷积+批标准化+残差连接”的组合。

  在tensorflow2中要创建一个包含多个网络层的的结构,一般继承与tf.keras.Model类。

  # 残差块

  class ResnetBlock(tf.keras.Model):

  def __init__(self, kernel_size, filters):

  super(ResnetBlock, self).__init__(name='resnet_block')

  # 每个子层卷积核数

  filter1, filter2, filter3 = filters

  # 三个子层,每层1个卷积加一个批正则化

  # 第一个子层, 1*1的卷积

  self.conv1 = tf.keras.layers.Conv2D(filter1, (1,1))

  self.bn1 = tf.keras.layers.BatchNormalization()

  # 第二个子层, 使用特点的kernel_size

  self.conv2 = tf.keras.layers.Conv2D(filter2, kernel_size, padding='same')

  self.bn2 = tf.keras.layers.BatchNormalization()

  # 第三个子层,1*1卷积

  self.conv3 = tf.keras.layers.Conv2D(filter3, (1,1))

  self.bn3 = tf.keras.layers.BatchNormalization()

  def call(self, inputs, training=False):

  # 堆叠每个子层

  x = self.conv1(inputs)

  x = self.bn1(x, training=training)

  x = self.conv2(x)

  x = self.bn2(x, training=training)

  x = self.conv3(x)

  x = self.bn3(x, training=training)

  # 残差连接

  x += inputs

  outputs = tf.nn.relu(x)

  return outputs

  resnetBlock = ResnetBlock(2, [6,4,9])

  # 数据测试

  print(resnetBlock(tf.ones([1,3,9,9])))

  # 查看网络中的变量名

  print([x.name for x in resnetBlock.trainable_variables])

  tf.Tensor(无锡妇科医院排行 http://www.0510bhyy.com/

  [[[[0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.83203167 0.9436392 1.0989372 1.2588525 0.8683256 1.1279813

  0.7571581 0.47963202 0.88908756]]

  [[0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.79764616 1.0550306 0.9386751 1.1079601 0.9402881 0.99479383

  0.9072118 0.5618475 0.9134829 ]

  [0.83203167 0.9436392 1.0989372 1.2588525 0.8683256 1.1279813

  0.7571581 0.47963202 0.88908756]]

  [[1.0775117 1.1620466 0.72680396 1.0019443 1.2767658 1.1365149

  1.1792164 1.0868194 1.0623009 ]

  [1.0775117 1.1620466 0.72680396 1.0019443 1.2767658 1.1365149

  1.1792164 1.0868194 1.0623009 ]

  [1.0775117 1.1620466 0.72680396 1.0019443 1.2767658 1.1365149

  1.1792164 1.0868194 1.0623009 ]

  [1.0775117 1.1620466 0.72680396 1.0019443 1.2767658 1.1365149

  1.1792164 1.0868194 1.0623009 ]

  [1.0775117 1.1620466 0.72680396 1.0019443 1.2767658 1.1365149

  1.1792164 1.0868194 1.0623009 ]

  [1.0775117 1.1620466 0.72680396 1.0019443 1.2767658 1.1365149

  1.1792164 1.0868194 1.0623009 ]

  [1.0775117 1.1620466 0.7268039 1.0019443 1.2767658 1.1365149

  1.1792164 1.0868194 1.0623009 ]

  [1.0775117 1.1620466 0.7268039 1.0019443 1.2767658 1.1365149

  1.1792164 1.0868194 1.0623009 ]

  [0.87889266 0.9541194 0.8929231 0.96703756 1.0905087 1.0646607

  0.9235744 0.9829142 1.1302696 ]]]], shape=(1, 3, 9, 9), dtype=float32)

  ['resnet_block/conv2d_12/kernel:0', 'resnet_block/conv2d_12/bias:0', 'resnet_block/batch_normalization_v2_12/gamma:0', 'resnet_block/batch_normalization_v2_12/beta:0', 'resnet_block/conv2d_13/kernel:0', 'resnet_block/conv2d_13/bias:0', 'resnet_block/batch_normalization_v2_13/gamma:0', 'resnet_block/batch_normalization_v2_13/beta:0', 'resnet_block/conv2d_14/kernel:0', 'resnet_block/conv2d_14/bias:0', 'resnet_block/batch_normalization_v2_14/gamma:0', 'resnet_block/batch_normalization_v2_14/beta:0']

  如果模型是线性的,可以直接用tf.keras.Sequential来构造。

  seq_model = tf.keras.Sequential(

  [

  tf.keras.layers.Conv2D(1, 1, input_shape=(None, None, 3)),

  tf.keras.layers.BatchNormalization(),

  tf.keras.layers.Conv2D(2, 1, padding='same'),

  tf.keras.layers.BatchNormalization(),

  tf.keras.layers.Conv2D(3, 1),

  tf.keras.layers.BatchNormalization(),

  ])

  seq_model(tf.ones([1,2,3,3]))

  array([[[[-0.36850607, -0.60731524, 1.2792252 ],

  [-0.36850607, -0.60731524, 1.2792252 ],

  [-0.36850607, -0.60731524, 1.2792252 ]],

  [[-0.36850607, -0.60731524, 1.2792252 ],

  [-0.36850607, -0.60731524, 1.2792252 ],

  [-0.36850607, -0.60731524, 1.2792252 ]]]], dtype=float32)>

转载于:https://www.cnblogs.com/gnz49/p/11584512.html

你可能感兴趣的:(Tensorflow2.0教程27:自定义层)