转载过程中,图片丢失,代码显示错乱。
为了更好的学习内容,请访问原创版本:
http://www.missshi.cn/api/view/blog/59bbcb46e519f50d04000206
Ps:初次访问由于js文件较大,请耐心等候(8s左右)
在使用Tensorflow框架时,通常的步骤如下:
1. 初始化变量
2. 启动一个Session
3. 训练算法
4. 完成神经网络
首先,让我们先了解一些Tensorflow的库函数:
- import math
- import numpy as np
- import h5py
- import matplotlib.pyplot as plt
- import tensorflow as tf
- from tensorflow.python.framework import ops
- from tf_utils import load_dataset, random_mini_batches, convert_to_one_hot, predict
-
- %matplotlib inline
- np.random.seed(1)
其中,一些相关函数如下:
- def load_dataset():
- train_dataset = h5py.File('datasets/train_signs.h5', "r")
- train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
- train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
-
- test_dataset = h5py.File('datasets/test_signs.h5', "r")
- test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
- test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
-
- classes = np.array(test_dataset["list_classes"][:]) # the list of classes
-
- train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
- test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
-
- return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
-
- def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
- """
- Creates a list of random minibatches from (X, Y)
-
- Arguments:
- X -- input data, of shape (input size, number of examples)
- Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
- mini_batch_size - size of the mini-batches, integer
- seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours.
-
- Returns:
- mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
- """
-
- m = X.shape[1] # number of training examples
- mini_batches = []
- np.random.seed(seed)
-
- # Step 1: Shuffle (X, Y)
- permutation = list(np.random.permutation(m))
- shuffled_X = X[:, permutation]
- shuffled_Y = Y[:, permutation].reshape((Y.shape[0],m))
-
- # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
- num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning
- for k in range(0, num_complete_minibatches):
- mini_batch_X = shuffled_X[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
- mini_batch_Y = shuffled_Y[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
- mini_batch = (mini_batch_X, mini_batch_Y)
- mini_batches.append(mini_batch)
-
- # Handling the end case (last mini-batch < mini_batch_size)
- if m % mini_batch_size != 0:
- mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size : m]
- mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size : m]
- mini_batch = (mini_batch_X, mini_batch_Y)
- mini_batches.append(mini_batch)
-
- return mini_batches
-
- def convert_to_one_hot(Y, C):
- Y = np.eye(C)[Y.reshape(-1)].T
- return Y
-
- def predict(X, parameters):
-
- W1 = tf.convert_to_tensor(parameters["W1"])
- b1 = tf.convert_to_tensor(parameters["b1"])
- W2 = tf.convert_to_tensor(parameters["W2"])
- b2 = tf.convert_to_tensor(parameters["b2"])
- W3 = tf.convert_to_tensor(parameters["W3"])
- b3 = tf.convert_to_tensor(parameters["b3"])
-
- params = {"W1": W1,
- "b1": b1,
- "W2": W2,
- "b2": b2,
- "W3": W3,
- "b3": b3}
-
- x = tf.placeholder("float", [12288, 1])
-
- z3 = forward_propagation_for_predict(x, params)
- p = tf.argmax(z3)
-
- sess = tf.Session()
- prediction = sess.run(p, feed_dict = {x: X})
-
- return prediction
Ps:为了给大家提供更好的学习效果,我们提供了原始数据集train_signs.h5。
请访问http://www.missshi.cn/#/books搜索train_signs.h5进行下载,首次访问Js可能加载微慢,请耐心等候(约10s)。
如果感觉不错希望大家推广下网站哈!不建议大家把训练集直接在QQ群或CSDN上直接分享。
现在,我们已经引入了我们需要的库函数。
接下来,我们首先来计算一下训练样本的误差:
- y_hat = tf.constant(36, name='y_hat') # Define y_hat constant. Set to 36.
- y = tf.constant(39, name='y') # Define y. Set to 39
-
- loss = tf.Variable((y - y_hat)**2, name='loss') # Create a variable for the loss
-
- init = tf.global_variables_initializer() # When init is run later (session.run(init)),
- # the loss variable will be initialized and ready to be computed
- with tf.Session() as session: # Create a session and print the output
- session.run(init) # Initializes the variables
- print(session.run(loss)) # Prints the loss
- # 9
对于Tensorflow的代码实现而言,实现代码的结构如下:
1. 创建Tensorflow变量(此时,尚未直接计算)
2. 实现Tensorflow变量之间的操作定义
3. 初始化Tensorflow变量
4. 创建Session
5. 运行Session,此时,之前编写操作都会在这一步运行。
下面,让我们通过更多的示例来了解这个概念:
- a = tf.constant(2)
- b = tf.constant(10)
- c = tf.multiply(a,b)
- print(c)
- # Tensor("Mul:0", shape=(), dtype=int32)
正如我们之前所讲的,在定义变量的部分,计算不会直接进行,因此,c并不是20,而是一个int32型变量。
- sess = tf.Session()
- print(sess.run(c))
- # 20
接下来,我们来继续学习placeholder。
placeholder是一个占位变量,表示在运行过程中才会给这个变量赋值。
- x = tf.placeholder(tf.int64, name = 'x')
- print(sess.run(2 * x, feed_dict = {x: 3}))
- # 6
- sess.close()
线性函数
接下来,我们需要用Tensorflow来实现神经网络中最常用的函数之一:线性函数。
- def linear_function():
- """
- Implements a linear function:
- Initializes W to be a random tensor of shape (4,3)
- Initializes X to be a random tensor of shape (3,1)
- Initializes b to be a random tensor of shape (4,1)
- Returns:
- result -- runs the session for Y = WX + b
- """
-
- np.random.seed(1)
-
- ### START CODE HERE ### (4 lines of code)
- X = tf.constant(np.random.randn(3,1), name = "X")
- W = tf.constant(np.random.randn(4,3), name = "X")
- b = tf.constant(np.random.randn(4,1), name = "X")
- Y = tf.matmul(W, X) + b
- ### END CODE HERE ###
-
- # Create the session using tf.Session() and run it with sess.run(...) on the variable you want to calculate
-
- ### START CODE HERE ###
- sess = tf.Session()
- result = sess.run(Y)
- ### END CODE HERE ###
-
- # close the session
- sess.close()
-
- return result
sigmod函数
- def sigmoid(z):
- """
- Computes the sigmoid of z
-
- Arguments:
- z -- input value, scalar or vector
-
- Returns:
- results -- the sigmoid of z
- """
-
- ### START CODE HERE ### ( approx. 4 lines of code)
- # Create a placeholder for x. Name it 'x'.
- x = tf.placeholder(tf.float32, name = "x")
-
- # compute sigmoid(x)
- sigmoid = tf.sigmoid(x)
-
- # Create a session, and run it. Please use the method 2 explained above.
- # You should use a feed_dict to pass z's value to x.
- with tf.Session() as sess:
- # Run session and call the output "result"
- result = sess.run(sigmoid, feed_dict = {x: z})
-
- ### END CODE HERE ###
-
- return result
代价函数计算
其中,代价函数的定义如下:
- def cost(logits, labels):
- """
- Computes the cost using the sigmoid cross entropy
-
- Arguments:
- logits -- vector containing z, output of the last linear unit (before the final sigmoid activation)
- labels -- vector of labels y (1 or 0)
-
- Note: What we've been calling "z" and "y" in this class are respectively called "logits" and "labels"
- in the TensorFlow documentation. So logits will feed into z, and labels into y.
-
- Returns:
- cost -- runs the session of the cost (formula (2))
- """
-
- ### START CODE HERE ###
-
- # Create the placeholders for "logits" (z) and "labels" (y) (approx. 2 lines)
- z = tf.placeholder(tf.float32, name = "logits")
- y = tf.placeholder(tf.float32, name = "labels")
-
- # Use the loss function (approx. 1 line)
- cost = tf.nn.sigmoid_cross_entropy_with_logits(logits = z, labels = y)
-
- # Create a session (approx. 1 line). See method 1 above.
- sess = tf.Session()
-
- # Run the session (approx. 1 line).
- cost = sess.run(cost, feed_dict = {z: logits, y:labels})
-
- # Close the session (approx. 1 line). See method 1 above.
- sess.close()
- ### END CODE HERE ###
-
- return cost
看到了嘛?
只用一个函数tf.nn.sigmoid_cross_entropy_with_logits(logits = z, labels = y)
,我们就实现了如此复杂的代价函数。
这就是深度学习框架的魅力!
进行0,1编码
通常,对于一个多分类问题,我们得到的标签是一些0到C-1的整数。其中,C是分类数。
然而,在训练之前,我们需要将直接0到C-1的整数转换为一个C维的向量。
- def one_hot_matrix(labels, C):
- """
- Creates a matrix where the i-th row corresponds to the ith class number and the jth column
- corresponds to the jth training example. So if example j had a label i. Then entry (i,j)
- will be 1.
-
- Arguments:
- labels -- vector containing the labels
- C -- number of classes, the depth of the one hot dimension
-
- Returns:
- one_hot -- one hot matrix
- """
-
- ### START CODE HERE ###
-
- # Create a tf.constant equal to C (depth), name it 'C'. (approx. 1 line)
- C = tf.constant(C, name = "C")
-
- # Use tf.one_hot, be careful with the axis (approx. 1 line)
- one_hot_matrix = tf.one_hot(labels, C, 1)
-
- # Create the session (approx. 1 line)
- sess = tf.Session()
-
- # Run the session (approx. 1 line)
- one_hot = sess.run(one_hot_matrix).T
-
- # Close the session (approx. 1 line). See method 1 above.
- sess.close()
-
- ### END CODE HERE ###
-
- return one_hot
全0初始化与全1初始化
- def zeros(shape):
- """
- Creates an array of ones of dimension shape
-
- Arguments:
- shape -- shape of the array you want to create
-
- Returns:
- ones -- array containing only ones
- """
-
- ### START CODE HERE ###
-
- # Create "zeros" tensor using tf.zeros(...). (approx. 1 line)
- ones = tf.zeros(shape)
-
- # Create the session (approx. 1 line)
- sess = tf.Session()
-
- # Run the session to compute 'zeros' (approx. 1 line)
- zeros = sess.run(zeros)
-
- # Close the session (approx. 1 line). See method 1 above.
- sess.close()
-
- ### END CODE HERE ###
- return zeros
-
- def ones(shape):
- """
- Creates an array of ones of dimension shape
-
- Arguments:
- shape -- shape of the array you want to create
-
- Returns:
- ones -- array containing only ones
- """
-
- ### START CODE HERE ###
-
- # Create "ones" tensor using tf.ones(...). (approx. 1 line)
- ones = tf.ones(shape)
-
- # Create the session (approx. 1 line)
- sess = tf.Session()
-
- # Run the session to compute 'ones' (approx. 1 line)
- ones = sess.run(ones)
-
- # Close the session (approx. 1 line). See method 1 above.
- sess.close()
-
- ### END CODE HERE ###
- return ones
用tensorflow搭建神经网络模型时,可以分为两大步骤:
1. 建立计算图
2. 训练运行
问题描述:
我们需要去建立一个神经网络来识别0-5的六个手势。
每张图片的大小都是64*64像素。其中,训练集包含1080张图片。测试集包含120张图片。
- # 读取数据集
- X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
测试一张图片吧:
- # Example of a picture
- index = 0
- plt.imshow(X_train_orig[index])
- print ("y = " + str(np.squeeze(Y_train_orig[:, index])))
接下来,我们需要对读取的数据集进行预处理:
包括归一化和之前提到的零一化。
- X_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).T
- X_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T
- # Normalize image vectors
- X_train = X_train_flatten/255.
- X_test = X_test_flatten/255.
- # Convert training and test labels to one hot matrices
- Y_train = convert_to_one_hot(Y_train_orig, 6)
- Y_test = convert_to_one_hot(Y_test_orig, 6)
我们需要建立的模型结构如下:
其中,Softmax层是在多分类问题中最常用的输出层。
接下来,我们需要创建一些placeholder:
- def create_placeholders(n_x, n_y):
- """
- Creates the placeholders for the tensorflow session.
-
- Arguments:
- n_x -- scalar, size of an image vector (num_px * num_px = 64 * 64 * 3 = 12288)
- n_y -- scalar, number of classes (from 0 to 5, so -> 6)
-
- Returns:
- X -- placeholder for the data input, of shape [n_x, None] and dtype "float"
- Y -- placeholder for the input labels, of shape [n_y, None] and dtype "float"
-
- Tips:
- - You will use None because it let's us be flexible on the number of examples you will for the placeholders.
- In fact, the number of examples during test/train is different.
- """
-
- ### START CODE HERE ### (approx. 2 lines)
- X = tf.placeholder(tf.float32, [n_x, None], name = "X")
- Y = tf.placeholder(tf.float32, [n_y, None], name = "Y")
- ### END CODE HERE ###
-
- return X, Y
接下来,我们需要进行参数初始化:
- def initialize_parameters():
- """
- Initializes parameters to build a neural network with tensorflow. The shapes are:
- W1 : [25, 12288]
- b1 : [25, 1]
- W2 : [12, 25]
- b2 : [12, 1]
- W3 : [6, 12]
- b3 : [6, 1]
-
- Returns:
- parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3
- """
-
- tf.set_random_seed(1) # so that your "random" numbers match ours
-
- ### START CODE HERE ### (approx. 6 lines of code)
- W1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
- b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer())
- W2 = tf.get_variable("W2", [12,25], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
- b2 = tf.get_variable("b2", [12,1], initializer = tf.zeros_initializer())
- W3 = tf.get_variable("W3", [6,12], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
- b3 = tf.get_variable("b3", [6,1], initializer = tf.zeros_initializer())
- ### END CODE HERE ###
-
- parameters = {"W1": W1,
- "b1": b1,
- "W2": W2,
- "b2": b2,
- "W3": W3,
- "b3": b3}
-
- return parameters
然后,我们需要实现前向传播计算:
- def forward_propagation(X, parameters):
- """
- Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX
-
- Arguments:
- X -- input dataset placeholder, of shape (input size, number of examples)
- parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3"
- the shapes are given in initialize_parameters
-
- Returns:
- Z3 -- the output of the last LINEAR unit
- """
-
- # Retrieve the parameters from the dictionary "parameters"
- W1 = parameters['W1']
- b1 = parameters['b1']
- W2 = parameters['W2']
- b2 = parameters['b2']
- W3 = parameters['W3']
- b3 = parameters['b3']
-
- ### START CODE HERE ### (approx. 5 lines) # Numpy Equivalents:
- Z1 = tf.matmul(W1, X) + b1 # Z1 = np.dot(W1, X) + b1
- A1 = tf.nn.relu(Z1) # A1 = relu(Z1)
- Z2 = tf.matmul(W2, A1) + b2 # Z2 = np.dot(W2, a1) + b2
- A2 = tf.nn.relu(Z2) # A2 = relu(Z2)
- Z3 = tf.matmul(W3, A2) + b3 # Z3 = np.dot(W3,Z2) + b3
- ### END CODE HERE ###
-
- return Z3
最后,我们需要计算代价函数:
- def compute_cost(Z3, Y):
- """
- Computes the cost
-
- Arguments:
- Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
- Y -- "true" labels vector placeholder, same shape as Z3
-
- Returns:
- cost - Tensor of the cost function
- """
-
- # to fit the tensorflow requirement for tf.nn.softmax_cross_entropy_with_logits(...,...)
- logits = tf.transpose(Z3)
- labels = tf.transpose(Y)
-
- ### START CODE HERE ### (1 line of code)
- cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits, labels = labels))
- ### END CODE HERE ###
-
- return cost
需要说明的是,对于反向传播计算和参数更新这两个步骤,在Tensorflow等框架中,已经自动的根据我们编写的前向传播计算和代价函数自动完成了,无需我们自己编写。
下面,让我们根据刚才实现的一些方法来构建我们的模型吧:
- def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
- num_epochs = 1500, minibatch_size = 32, print_cost = True):
- """
- Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.
-
- Arguments:
- X_train -- training set, of shape (input size = 12288, number of training examples = 1080)
- Y_train -- test set, of shape (output size = 6, number of training examples = 1080)
- X_test -- training set, of shape (input size = 12288, number of training examples = 120)
- Y_test -- test set, of shape (output size = 6, number of test examples = 120)
- learning_rate -- learning rate of the optimization
- num_epochs -- number of epochs of the optimization loop
- minibatch_size -- size of a minibatch
- print_cost -- True to print the cost every 100 epochs
-
- Returns:
- parameters -- parameters learnt by the model. They can then be used to predict.
- """
-
- ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
- tf.set_random_seed(1) # to keep consistent results
- seed = 3 # to keep consistent results
- (n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set)
- n_y = Y_train.shape[0] # n_y : output size
- costs = [] # To keep track of the cost
-
- # Create Placeholders of shape (n_x, n_y)
- ### START CODE HERE ### (1 line)
- X, Y = create_placeholders(n_x, n_y)
- ### END CODE HERE ###
-
- # Initialize parameters
- ### START CODE HERE ### (1 line)
- parameters = initialize_parameters()
- ### END CODE HERE ###
-
- # Forward propagation: Build the forward propagation in the tensorflow graph
- ### START CODE HERE ### (1 line)
- Z3 = forward_propagation(X, parameters)
- ### END CODE HERE ###
-
- # Cost function: Add cost function to tensorflow graph
- ### START CODE HERE ### (1 line)
- cost = compute_cost(Z3, Y)
- ### END CODE HERE ###
-
- # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
- ### START CODE HERE ### (1 line)
- optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
- ### END CODE HERE ###
-
- # Initialize all the variables
- init = tf.global_variables_initializer()
-
- # Start the session to compute the tensorflow graph
- with tf.Session() as sess:
-
- # Run the initialization
- sess.run(init)
-
- # Do the training loop
- for epoch in range(num_epochs):
-
- epoch_cost = 0. # Defines a cost related to an epoch
- num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
- seed = seed + 1
- minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
-
- for minibatch in minibatches:
-
- # Select a minibatch
- (minibatch_X, minibatch_Y) = minibatch
-
- # IMPORTANT: The line that runs the graph on a minibatch.
- # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y).
- ### START CODE HERE ### (1 line)
- _ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
- ### END CODE HERE ###
-
- epoch_cost += minibatch_cost / num_minibatches
-
- # Print the cost every epoch
- if print_cost == True and epoch % 100 == 0:
- print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
- if print_cost == True and epoch % 5 == 0:
- costs.append(epoch_cost)
-
- # plot the cost
- plt.plot(np.squeeze(costs))
- plt.ylabel('cost')
- plt.xlabel('iterations (per tens)')
- plt.title("Learning rate =" + str(learning_rate))
- plt.show()
-
- # lets save the parameters in a variable
- parameters = sess.run(parameters)
- print ("Parameters have been trained!")
-
- # Calculate the correct predictions
- correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y))
-
- # Calculate accuracy on the test set
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
-
- print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
- print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))
-
- return parameters
用我们的模型来测试一下吧:
- parameters = model(X_train, Y_train, X_test, Y_test)
可以看到,经过一段时间的训练后,训练集的精确度为99.9%。而测试集的精确度为71.7%。
出现了一定的过拟合!想想应该怎么处理呢?
除了一些训练集和测试集中的图片,我们还可以使用一些其他的图片来进行测试。
- import scipy
- from PIL import Image
- from scipy import ndimage
-
- ## START CODE HERE ## (PUT YOUR IMAGE NAME)
- my_image = "thumbs_up.jpg"
- ## END CODE HERE ##
-
- # We preprocess your image to fit your algorithm.
- fname = "images/" + my_image
- image = np.array(ndimage.imread(fname, flatten=False))
- my_image = scipy.misc.imresize(image, size=(64,64)).reshape((1, 64*64*3)).T
- my_image_prediction = predict(my_image, parameters)
-
- plt.imshow(image)
- print("Your algorithm predicts: y = " + str(np.squeeze(my_image_prediction)))
关于Tensorflow的入门讲解,我们就讲解到这里,后续更多的实践都会通过tensorflow来进行!
更多更详细的内容,请访问原创网站:
http://www.missshi.cn/api/view/blog/59bbcb46e519f50d04000206
Ps:初次访问由于js文件较大,请耐心等候(8s左右)