残差网络resnet

残差网络

论文链接:https://arxiv.org/pdf/1512.03385.pdf
产生背景:随着网络深度的增加,导致了训练误差的增大;究其原因是,网络没有被很好的优化。
残差网络可以很深的原因:在一定程度上解决了梯度消失。
残差单元如下图:

残差网络resnet_第1张图片
当 维 度 x = F 当维度x=F x=F
y = F ( x , { W i } ) + x F = W 2 σ ( W 1 x ) \begin{aligned} y &= F(x,\{W_i\})+x \\ F &=W_2\sigma(W_1x) \end{aligned} yF=F(x,{Wi})+x=W2σ(W1x)
当 维 度 x ≠ F 当维度x\ne F x̸=F
y = F ( x , { W i } ) + W s x F = W 2 σ ( W 1 x ) \begin{aligned} y &= F(x,\{W_i\})+W_sx \\ F &=W_2\sigma(W_1x) \end{aligned} yF=F(x,{Wi})+Wsx=W2σ(W1x)

主要的网络结构

残差网络resnet_第2张图片
resnet网络的设计原则:
1.使用3x3卷积
2.stride=2时,ls通道数变2倍
4.几乎没有pooling
5.没有全连接层
6.没有使用dropout

caffe中的残差网络

protobuf链接:https://github.com/KaimingHe/deep-residual-networks

对于每个卷积层都是:conv->bn->scale->relu

layer {
	bottom: "data"
	top: "conv1"
	name: "conv1"
	type: "Convolution"
	convolution_param {
		num_output: 64
		kernel_size: 7
		pad: 3
		stride: 2
		bias_term: false
	}
}

layer {
	bottom: "conv1"
	top: "conv1"
	name: "bn_conv1"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "conv1"
	top: "conv1"
	name: "scale_conv1"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	top: "conv1"
	bottom: "conv1"
	name: "conv1_relu"
	type: "ReLU"
}

其可视化效果为(使用netscope可视化):
残差网络resnet_第3张图片

为了减小计算,从conv2_x到conv3_x,都增加一个1x1的卷积核,即为

layer {
	bottom: "res2a_branch2a"
	top: "res2a_branch2a"
	name: "bn2a_branch2a"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "res2a_branch2a"
	top: "res2a_branch2a"
	name: "scale2a_branch2a"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	top: "res2a_branch2a"
	bottom: "res2a_branch2a"
	name: "res2a_branch2a_relu"
	type: "ReLU"
}

layer {
	bottom: "res2a_branch2a"
	top: "res2a_branch2b"
	name: "res2a_branch2b"
	type: "Convolution"
	convolution_param {
		num_output: 64
		kernel_size: 3
		pad: 1
		stride: 1
		bias_term: false
	}
}

layer {
	bottom: "res2a_branch2b"
	top: "res2a_branch2b"
	name: "bn2a_branch2b"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "res2a_branch2b"
	top: "res2a_branch2b"
	name: "scale2a_branch2b"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	top: "res2a_branch2b"
	bottom: "res2a_branch2b"
	name: "res2a_branch2b_relu"
	type: "ReLU"
}

layer {
	bottom: "res2a_branch2b"
	top: "res2a_branch2c"
	name: "res2a_branch2c"
	type: "Convolution"
	convolution_param {
		num_output: 256
		kernel_size: 1
		pad: 0
		stride: 1
		bias_term: false
	}
}

layer {
	bottom: "res2a_branch2c"
	top: "res2a_branch2c"
	name: "bn2a_branch2c"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "res2a_branch2c"
	top: "res2a_branch2c"
	name: "scale2a_branch2c"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

其图为
残差网络resnet_第4张图片

从conv1到conv2过渡时,由于通读数不同,需要对x进行project.


layer {
	bottom: "pool1"
	top: "res2a_branch1"
	name: "res2a_branch1"
	type: "Convolution"
	convolution_param {
		num_output: 256
		kernel_size: 1
		pad: 0
		stride: 1
		bias_term: false
	}
}

layer {
	bottom: "res2a_branch1"
	top: "res2a_branch1"
	name: "bn2a_branch1"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "res2a_branch1"
	top: "res2a_branch1"
	name: "scale2a_branch1"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	bottom: "pool1"
	top: "res2a_branch2a"
	name: "res2a_branch2a"
	type: "Convolution"
	convolution_param {
		num_output: 64
		kernel_size: 1
		pad: 0
		stride: 1
		bias_term: false
	}
}

layer {
	bottom: "res2a_branch2a"
	top: "res2a_branch2a"
	name: "bn2a_branch2a"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "res2a_branch2a"
	top: "res2a_branch2a"
	name: "scale2a_branch2a"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	top: "res2a_branch2a"
	bottom: "res2a_branch2a"
	name: "res2a_branch2a_relu"
	type: "ReLU"
}

layer {
	bottom: "res2a_branch2a"
	top: "res2a_branch2b"
	name: "res2a_branch2b"
	type: "Convolution"
	convolution_param {
		num_output: 64
		kernel_size: 3
		pad: 1
		stride: 1
		bias_term: false
	}
}

layer {
	bottom: "res2a_branch2b"
	top: "res2a_branch2b"
	name: "bn2a_branch2b"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "res2a_branch2b"
	top: "res2a_branch2b"
	name: "scale2a_branch2b"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	top: "res2a_branch2b"
	bottom: "res2a_branch2b"
	name: "res2a_branch2b_relu"
	type: "ReLU"
}

layer {
	bottom: "res2a_branch2b"
	top: "res2a_branch2c"
	name: "res2a_branch2c"
	type: "Convolution"
	convolution_param {
		num_output: 256
		kernel_size: 1
		pad: 0
		stride: 1
		bias_term: false
	}
}

layer {
	bottom: "res2a_branch2c"
	top: "res2a_branch2c"
	name: "bn2a_branch2c"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "res2a_branch2c"
	top: "res2a_branch2c"
	name: "scale2a_branch2c"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	bottom: "res2a_branch1"
	bottom: "res2a_branch2c"
	top: "res2a"
	name: "res2a"
	type: "Eltwise"
}

layer {
	bottom: "res2a"
	top: "res2a"
	name: "res2a_relu"
	type: "ReLU"
}

残差网络resnet_第5张图片

当x和F维度相同时,就不需要projection了。

layer {
	bottom: "res2a_branch1"
	bottom: "res2a_branch2c"
	top: "res2a"
	name: "res2a"
	type: "Eltwise"
}

layer {
	bottom: "res2a"
	top: "res2a"
	name: "res2a_relu"
	type: "ReLU"
}

layer {
	bottom: "res2a"
	top: "res2b_branch2a"
	name: "res2b_branch2a"
	type: "Convolution"
	convolution_param {
		num_output: 64
		kernel_size: 1
		pad: 0
		stride: 1
		bias_term: false
	}
}

layer {
	bottom: "res2b_branch2a"
	top: "res2b_branch2a"
	name: "bn2b_branch2a"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "res2b_branch2a"
	top: "res2b_branch2a"
	name: "scale2b_branch2a"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	top: "res2b_branch2a"
	bottom: "res2b_branch2a"
	name: "res2b_branch2a_relu"
	type: "ReLU"
}

layer {
	bottom: "res2b_branch2a"
	top: "res2b_branch2b"
	name: "res2b_branch2b"
	type: "Convolution"
	convolution_param {
		num_output: 64
		kernel_size: 3
		pad: 1
		stride: 1
		bias_term: false
	}
}

layer {
	bottom: "res2b_branch2b"
	top: "res2b_branch2b"
	name: "bn2b_branch2b"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "res2b_branch2b"
	top: "res2b_branch2b"
	name: "scale2b_branch2b"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	top: "res2b_branch2b"
	bottom: "res2b_branch2b"
	name: "res2b_branch2b_relu"
	type: "ReLU"
}

layer {
	bottom: "res2b_branch2b"
	top: "res2b_branch2c"
	name: "res2b_branch2c"
	type: "Convolution"
	convolution_param {
		num_output: 256
		kernel_size: 1
		pad: 0
		stride: 1
		bias_term: false
	}
}

layer {
	bottom: "res2b_branch2c"
	top: "res2b_branch2c"
	name: "bn2b_branch2c"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}

layer {
	bottom: "res2b_branch2c"
	top: "res2b_branch2c"
	name: "scale2b_branch2c"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

layer {
	bottom: "res2a"
	bottom: "res2b_branch2c"
	top: "res2b"
	name: "res2b"
	type: "Eltwise"
}

layer {
	bottom: "res2b"
	top: "res2b"
	name: "res2b_relu"
	type: "ReLU"
}

残差网络resnet_第6张图片

你可能感兴趣的:(机器学习)