前言
最近在专注Spark开发,记录下自己的工作和学习路程,希望能跟大家互相交流成长
本文章更倾向于实战案例,涉及框架原理及基本应用还请读者自行阅读相关文章,相关在本文章最后参考资料中
关于Zookeeper/Kafka/HBase/Hadoop相关集群环境搭建作者会陆续更新
本文章发布后会及时更新文章中出现的错误及增加内容,欢迎大家订阅
QQ:86608625 微信:guofei1990123
背景
Kafka实时记录从数据采集工具Flume或业务系统实时接口收集数据,并作为消息缓冲组件为上游实时计算框架提供可靠数据支撑,Spark 1.3版本后支持两种整合Kafka机制(Receiver-based Approach 和 Direct Approach),具体细节请参考文章最后官方文档链接,数据存储使用HBase
实现思路
- 实现Kafka消息生产者模拟器
- Spark-Streaming采用Direct Approach方式实时获取Kafka中数据
- Spark-Streaming对数据进行业务计算后数据存储到HBase
本地虚拟机集群环境配置
由于笔者机器性能有限,hadoop/zookeeper/kafka集群都搭建在一起主机名分别为hadoop1,hadoop2,hadoop3; hbase为单节点 在hadoop1
缺点及不足
由于笔者技术有限,代码设计上有部分缺陷,比如spark-streaming计算后数据保存hbase逻辑性能很低,希望大家多提意见以便小编及时更正
代码实现
Kafka消息模拟器
package clickstream
import java.util.{Properties, Random, UUID}
import kafka.producer.{KeyedMessage, Producer, ProducerConfig}
import org.codehaus.jettison.json.JSONObject
/** *
Created by 郭飞 on 2016/5/31.
*/
object KafkaMessageGenerator {
private val random = new Random()
private var pointer = -1
private val os_type = Array(
"Android", "IPhone OS",
"None", "Windows Phone")
def click() : Double = {
random.nextInt(10)
}
def getOsType() : String = {
pointer = pointer + 1
if(pointer >= os_type.length) {
pointer = 0
os_type(pointer)
} else {
os_type(pointer)
}
}
def main(args: Array[String]): Unit = {
val topic = "user_events"
//本地虚拟机ZK地址
val brokers = "hadoop1:9092,hadoop2:9092,hadoop3:9092"
val props = new Properties()
props.put("metadata.broker.list", brokers)
props.put("serializer.class", "kafka.serializer.StringEncoder")
val kafkaConfig = new ProducerConfig(props)
val producer = new Producer[String, String](kafkaConfig)
while(true) {
// prepare event data
val event = new JSONObject()
event
.put("uid", UUID.randomUUID())//随机生成用户id
.put("event_time", System.currentTimeMillis.toString) //记录时间发生时间
.put("os_type", getOsType) //设备类型
.put("click_count", click) //点击次数
// produce event message
producer.send(new KeyedMessage[String, String](topic, event.toString))
println("Message sent: " + event)
Thread.sleep(200)
}
}
}
Spark-Streaming主类
package clickstream
import kafka.serializer.StringDecoder
import net.sf.json.JSONObject
import org.apache.hadoop.hbase.client.{HTable, Put}
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.{HBaseConfiguration, TableName}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* Created by 郭飞 on 2016/5/31.
*/
object PageViewStream {
def main(args: Array[String]): Unit = {
var masterUrl = "local[2]"
if (args.length > 0) {
masterUrl = args(0)
}
// Create a StreamingContext with the given master URL
val conf = new SparkConf().setMaster(masterUrl).setAppName("PageViewStream")
val ssc = new StreamingContext(conf, Seconds(5))
// Kafka configurations
val topics = Set("PageViewStream")
//本地虚拟机ZK地址
val brokers = "hadoop1:9092,hadoop2:9092,hadoop3:9092"
val kafkaParams = Map[String, String](
"metadata.broker.list" -> brokers,
"serializer.class" -> "kafka.serializer.StringEncoder")
// Create a direct stream
val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
val events = kafkaStream.flatMap(line => {
val data = JSONObject.fromObject(line._2)
Some(data)
})
// Compute user click times
val userClicks = events.map(x => (x.getString("uid"), x.getInt("click_count"))).reduceByKey(_ + _)
userClicks.foreachRDD(rdd => {
rdd.foreachPartition(partitionOfRecords => {
partitionOfRecords.foreach(pair => {
//Hbase配置
val tableName = "PageViewStream"
val hbaseConf = HBaseConfiguration.create()
hbaseConf.set("hbase.zookeeper.quorum", "hadoop1:9092")
hbaseConf.set("hbase.zookeeper.property.clientPort", "2181")
hbaseConf.set("hbase.defaults.for.version.skip", "true")
//用户ID
val uid = pair._1
//点击次数
val click = pair._2
//组装数据
val put = new Put(Bytes.toBytes(uid))
put.add("Stat".getBytes, "ClickStat".getBytes, Bytes.toBytes(click))
val StatTable = new HTable(hbaseConf, TableName.valueOf(tableName))
StatTable.setAutoFlush(false, false)
//写入数据缓存
StatTable.setWriteBufferSize(3*1024*1024)
StatTable.put(put)
//提交
StatTable.flushCommits()
})
})
})
ssc.start()
ssc.awaitTermination()
}
}
Maven POM文件
4.0.0
com.guofei.spark
RiskControl
1.0-SNAPSHOT
jar
RiskControl
http://maven.apache.org
UTF-8
org.apache.spark
spark-core_2.10
1.3.0
org.apache.spark
spark-streaming_2.10
1.3.0
org.apache.spark
spark-streaming-kafka_2.10
1.3.0
org.apache.hbase
hbase
0.96.2-hadoop2
pom
org.apache.hbase
hbase-server
0.96.2-hadoop2
org.apache.hbase
hbase-client
0.96.2-hadoop2
org.apache.hbase
hbase-common
0.96.2-hadoop2
commons-io
commons-io
1.3.2
commons-logging
commons-logging
1.1.3
log4j
log4j
1.2.17
com.google.protobuf
protobuf-java
2.5.0
io.netty
netty
3.6.6.Final
org.apache.hbase
hbase-protocol
0.96.2-hadoop2
org.apache.zookeeper
zookeeper
3.4.5
org.cloudera.htrace
htrace-core
2.01
org.codehaus.jackson
jackson-mapper-asl
1.9.13
org.codehaus.jackson
jackson-core-asl
1.9.13
org.codehaus.jackson
jackson-jaxrs
1.9.13
org.codehaus.jackson
jackson-xc
1.9.13
org.slf4j
slf4j-api
1.6.4
org.slf4j
slf4j-log4j12
1.6.4
org.apache.hadoop
hadoop-client
2.6.4
commons-configuration
commons-configuration
1.6
org.apache.hadoop
hadoop-auth
2.6.4
org.apache.hadoop
hadoop-common
2.6.4
net.sf.json-lib
json-lib
2.4
jdk15
org.codehaus.jettison
jettison
1.1
redis.clients
jedis
2.5.2
org.apache.commons
commons-pool2
2.2
src/main/scala
src/test/scala
net.alchim31.maven
scala-maven-plugin
3.2.2
compile
testCompile
-make:transitive
-dependencyfile
${project.build.directory}/.scala_dependencies
org.apache.maven.plugins
maven-shade-plugin
2.4.3
package
shade
*:*
META-INF/*.SF
META-INF/*.DSA
META-INF/*.RSA
FAQ
- Maven导入json-lib报错
Failure to find net.sf.json-lib:json-lib:jar:2.3 in
http://repo.maven.apache.org/maven2 was cached in the local
repository
解决:
http://stackoverflow.com/questions/4173214/maven-missing-net-sf-json-lib
net.sf.json-lib
json-lib
2.4
jdk15
- 执行Spark-Streaming程序报错
org.apache.spark.SparkException: Task not serializable
userClicks.foreachRDD(rdd => {
rdd.foreachPartition(partitionOfRecords => {
partitionOfRecords.foreach(
这里面的代码中所包含的对象必须是序列化的
这里面的代码中所包含的对象必须是序列化的
这里面的代码中所包含的对象必须是序列化的
})
})
})
- 执行Maven打包报错,找不到依赖的jar包
error:not found: object kafka
ERROR import kafka.javaapi.producer.Producer
解决:win10本地系统 用户/郭飞/.m2/ 目录含有中文
参考文档
- spark-streaming官方文档
http://spark.apache.org/docs/latest/streaming-programming-guide.html - spark-streaming整合kafka官方文档
http://spark.apache.org/docs/latest/streaming-kafka-integration.html - spark-streaming整合flume官方文档
http://spark.apache.org/docs/latest/streaming-flume-integration.html - spark-streaming整合自定义数据源官方文档
http://spark.apache.org/docs/latest/streaming-custom-receivers.html - spark-streaming官方scala案例
https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples/streaming - 简单之美博客
http://shiyanjun.cn/archives/1097.html