最近开始入坑Python爬虫,专业是地理信息系统,对地理位置相关的信息比较感兴趣,所以就试着爬南京链家的二手房数据,并利用百度API绘制出热力图。Python的版本是Python3.6,然后用到了requests库和BeautifulSoup库还有csv库,IDE用的是PyCharm
windows命令行下,输入pip install requests回车安装完成后,继续输入pip install BeautifulSoup回车
南京链家二手房网页为https://nj.lianjia.com/ershoufang/pg1/,其中pg后面的数字表示第几页。所以访问时设置一个列表循环访问即可。再来看看链家网站的html规律,谷歌浏览器开发者模式查看元素,可以看到
,二手房的信息全部保存在li class=’clear’里面,等会用bs库解析网页的时候会用到。
在百度开发者平台上http://lbsyun.baidu.com/,注册,然后申请密匙,应用名称可以随便填,应用类型选择浏览器端即可。百度地图根据名称查询地点的经纬度的教程可以参考 这篇博客http://blog.csdn.net/qq_23926575/article/details/72569995
准备工作全部完成,开始爬网页,并将结果存储在程序根目录下da.csv中,话不多说,直接上源码
from bs4 import BeautifulSoup
import requests
import csv
import re
def getlocation(name):#调用百度API查询位置
bdurl='http://api.map.baidu.com/geocoder/v2/?address='
output='json'
ak='你的密匙'#输入你刚才申请的密匙
callback='showLocation'
uri=bdurl+name+'&output=t'+output+'&ak='+ak+'&callback='+callback
res=requests.get(uri)
s=BeautifulSoup(res.text)
lng=s.find('lng')
lat=s.find('lat')
if lng:
return lng.get_text()+','+lat.get_text()
url='https://nj.lianjia.com/ershoufang/pg'
heade={'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'}#请求头,模拟浏览器登陆
page=list(range(0,101,1))
p=[]
hi =[]
fi=[]
for i in page:#循环访问链家的网页
response=requests.get(url+str(i))
soup=BeautifulSoup(response.text)
#提取价格
prices=soup.find_all('div',class_='priceInfo')
for price in prices:
p.append(price.span.string)
#提取房源信息
hs=soup.find_all('div',class_='houseInfo')
for h in hs:
hi.append(h.get_text())
#提取关注度
followInfo=soup.find_all('div',class_='followInfo')
for f in followInfo:
fi.append(f.get_text())
print(i)
#houses=[]#定义列表用于存放房子的信息
n=0
num=len(p)
file=open('da.csv', 'w', newline='')
headers = ['name', 'loc', 'style', 'size', 'price', 'foc']
writers = csv.DictWriter(file, headers)
writers.writeheader()
while n#循环将信息存放进列表
h0=hi[n].split('|')
name=h0[0]
loc=getlocation(name)
style = re.findall(r'\s\d.\d.\s', hi[n])#用到了正则表达式提取户型
if style:
style=style[0]
size=re.findall(r'\s\d+\.?\d+',hi[n])#用到了正则表达式提取房子面积
if size:
size=size[0]
price=p[n]
foc=re.findall(r'^\d+',fi[n])[0]##用到了正则表达式提取房子的关注度
house = {
'name': '',
'loc': '',
'style': '',
'size': '',
'price': '',
'foc': ''
}
#将房子的信息放进一个dict中
house['name']=name
house['loc']=loc
house['style']=style
house['size']=size
house['price']=price
house['foc']=foc
writers.writerow(house)#将dict写入到csv文件中
n+=1
print(n)
file.close()
OK,运行代码,就可以看到在程序根目录下出现了da.csv文件,打开可以看到数据已经全部爬好了,查看数据发现经纬度字段会有空值,要在excel中将这些空值删除掉。
百度地图制作热力图的官方文档在http://developer.baidu.com/map/jsdemo.htm#c1_15%E3%80%82中,可以发现,热力图点的数据部分为
var points =[
{"lng":经度,"lat":纬度,"count":数值},
{"lng":经度,"lat":纬度,"count":数值},
...
]
所以我们要将我们存储在csv中的数据输出成这样的格式,代码如下(将二手房的关注度作为count的值):
import csv
reader=csv.reader(open('da.csv'))
for row in reader:
loc=row[1]
sloc=loc.split(',')
lng=''
lat=''
if len(sloc)==2:#第一行是列名需要做判断
lng=sloc[0]
lat=sloc[1]
count=row[5]
out='{\"lng\":'+lng+',\"lat\":'+lat+',\"count\":'+count+'},'
print(out)
这样在编译器中会输出格式化好的经纬度信息,如下图所示:
接着新建一个html文件,将百度api中的示例代码拷贝进去,将var points中的点值换成刚才输出的值。最后,因为百度由于百度地图JavaScript API热力图默认的是以天安门为中心的北京区域地图,而我们的数据是南京的,所以这里还需要对热力图中“设置中心点坐标和地图级别”的部分进行修改。修改BMap.Point中的值为南京市中心的值,修改级别为12.
最后将html代码如下(因为点的数量实在太多,在这里我就只放三个点进去):
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
<script type="text/javascript" src="http://api.map.baidu.com/api?v=2.0&ak=lB1LFGD8N6ydaTCSmVxiPYSly973KBHa">script>
<script type="text/javascript" src="http://api.map.baidu.com/library/Heatmap/2.0/src/Heatmap_min.js">script>
<title>热力图功能示例title>
<style type="text/css">
ul,li{list-style: none;margin:0;padding:0;float:left;}
html{height:100%}
body{height:100%;margin:0px;padding:0px;font-family:"微软雅黑";}
#container{height:90%;width:100%;}
#r-result{width:100%;}
style>
head>
<body>
<div id="container">div>
<div id="r-result">
<input type="button" onclick="openHeatmap();" value="显示热力图"/><input type="button" onclick="closeHeatmap();" value="关闭热力图"/>
div>
body>
html>
<script type="text/javascript">
var map = new BMap.Map("container"); // 创建地图实例
var point = new BMap.Point(118.800459,32.06715);
map.centerAndZoom(point, 12); // 初始化地图,设置中心点坐标和地图级别
map.enableScrollWheelZoom(); // 允许滚轮缩放
var points =[
{"lng":101.538291069,"lat":30.0223723448,"count":41},
{"lng":101.727603422,"lat":36.6316356868,"count":8},
{"lng":99.7141240332,"lat":27.8175439265,"count":44}];
if(!isSupportCanvas()){
alert('热力图目前只支持有canvas支持的浏览器,您所使用的浏览器不能使用热力图功能~')
}
//详细的参数,可以查看heatmap.js的文档 https://github.com/pa7/heatmap.js/blob/master/README.md
//参数说明如下:
/* visible 热力图是否显示,默认为true
* opacity 热力的透明度,1-100
* radius 势力图的每个点的半径大小
* gradient {JSON} 热力图的渐变区间 . gradient如下所示
* {
.2:'rgb(0, 255, 255)',
.5:'rgb(0, 110, 255)',
.8:'rgb(100, 0, 255)'
}
其中 key 表示插值的位置, 0~1.
value 为颜色值.
*/
heatmapOverlay = new BMapLib.HeatmapOverlay({"radius":20});
map.addOverlay(heatmapOverlay);
heatmapOverlay.setDataSet({data:points,max:100});
//是否显示热力图
function openHeatmap(){
heatmapOverlay.show();
}
function closeHeatmap(){
heatmapOverlay.hide();
}
closeHeatmap();
function setGradient(){
/*格式如下所示:
{
0:'rgb(102, 255, 0)',
.5:'rgb(255, 170, 0)',
1:'rgb(255, 0, 0)'
}*/
var gradient = {};
var colors = document.querySelectorAll("input[type='color']");
colors = [].slice.call(colors,0);
colors.forEach(function(ele){
gradient[ele.getAttribute("data-key")] = ele.value;
});
heatmapOverlay.setOptions({"gradient":gradient});
}
//判断浏览区是否支持canvas
function isSupportCanvas(){
var elem = document.createElement('canvas');
return !!(elem.getContext && elem.getContext('2d'));
}
script>
最后,打开html文件,在浏览器中可以看到,热力图的效果如下,看起来还不错。
不过,因为在上面用百度API根据地名查询经纬度的部分,查询得到的经纬度有些并不是南京的,这个问题暂时还没想到解决办法。