from PIL import Image
import numpy as np
X_train = Image.open(r'.\faces\00b34e16b0270e43d2e6591bcadb2eaf-0.jpg')
X_train = X_train.resize((64,64),Image.ANTIALIAS)
X_train = np.array(X_train)
X_train = np.expand_dims(X_train, axis=0)
print(X_train.shape)
for dirname, _, filenames in os.walk(r'.\faces'):
for filename in filenames:
if X_train.shape[0] > 5000:
break
try:
im = Image.open(os.path.join(dirname, filename))
im = im.resize((64,64),Image.ANTIALIAS)
image_array = np.array(im)
image_array = np.expand_dims(image_array, axis=0)
X_train = np.concatenate((X_train, image_array), axis=0)
except:
pass
print(str(X_train.shape[0]))
X_train = X_train.resize((64,64),Image.ANTIALIAS)
此代码是指将读取的图片尺寸缩放为64x64,使用ANTIALIAS过滤器。
X_train = np.array(X_train)
是指将X_train从PIL.Image.Image类型转化为nd.array类型。
X_train = np.expand_dims(X_train, axis=0)
是指将(64,64,3)的尺寸拓展为(1,64,64,3)。
如果axis=1,则尺寸变为(64,1,64,3),以此类推。
X_train = np.concatenate((X_train, image_array), axis=0)
是指将新图片添加到X_train 数组下面,这样一来,每循环一次第一维度会加一。
如果axis=1,则每循环一次第二维度会加一,以此类推。