- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- dice系数 交叉熵_一文搞懂交叉熵损失
weixin_39721853
dice系数交叉熵
本文从信息论和最大似然估计得角度推导交叉熵作为分类损失函数的依据。从熵来看交叉熵损失信息量信息量来衡量一个事件的不确定性,一个事件发生的概率越大,不确定性越小,则其携带的信息量就越小。设\(X\)是一个离散型随机变量,其取值为集合\(X={x_0,x_1,\dots,x_n}\),则其概率分布函数为\(p(x)=Pr(X=x),x\inX\),则定义事件\(X=x_0\)的信息量为:\[I(x_0
- 高斯分布推导
章靓
概率论
GaussianDistribution基础概念:似然性:用于在已知某些观测所得到的结果时,对有关事物之性质的参数进行估值。最大似然估计:给定一个概率分布DDD,一直其概率密度函数为fDf_DfD,以及一个分布参数θ\thetaθ,我们可以从这个分布中抽出一个具有nnn个值的采样X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,⋯,Xn,利用fDf_DfD计算出其似然函数:L(
- 深度学习如何入门?
科学的N次方
深度学习
入门深度学习需要系统性的学习和实践经验积累,以下是一份详细的入门指南,包含了关键的学习步骤和资源:预备知识:•编程基础:熟悉Python编程语言,它是深度学习领域最常用的编程语言。确保掌握变量、条件语句、循环、函数等基本概念,并学习如何使用Python处理数据和文件操作。•数学基础:理解线性代数(矩阵运算、向量空间等)、微积分(导数、梯度求解等)、概率论与统计学(期望、方差、概率分布、最大似然估计
- 九月二十六日总结
疯狂太阳花
英语:2013年第三篇,我们的未来一片光明,第四篇,州政府的权利,联邦政府的权利,最高法院,三权分立,checkandbalance每日一句,信任的重要性时文精析数学:数理统计的初步,参数估计样本均值,样本方差,k阶原点矩,三个分布,卡方分布,t分布,F分布,正态总体点估计,矩估计法,最大似然估计结构力学:静定拱,三绞拱,拱轴线,拱趾,拱顶,跨度,拱高内力计算,合理拱轴线
- Pixel Recurrent Neural Networks 和 autoregressive models 自回归模型
Longlongaaago
机器学习深度学习
PixelRecurrentNeuralNetworkspixelrnn是生成模型的一种,基于autoregressivemodels。他的思想很简单,就是最大似然估计的方式去拟合图像数据。将二维的图像数据比作序列数据,以条件概率的方式,逐点预测和计算。并且每个像素点的预测都在[0-255]之间,(单通道情况下)如下图1所示:图1,autoregressivemodels在二维图片上的预测方式。其
- 机器学习入门之基础概念及线性回归
StarCoder_Yue
算法机器学习学习笔记机器学习线性回归正则化人工智能算法数学
任务目录什么是Machinelearning学习中心极限定理,学习正态分布,学习最大似然估计推导回归Lossfunction学习损失函数与凸函数之间的关系了解全局最优和局部最优学习导数,泰勒展开推导梯度下降公式写出梯度下降的代码学习L2-Norm,L1-Norm,L0-Norm推导正则化公式说明为什么用L1-Norm代替L0-Norm学习为什么只对w/Θ做限制,不对b做限制Question1:Wh
- 机器学习 - 似然函数:概念、应用与代码实例
机器学习人工智能深度学习算法
本文深入探讨了似然函数的基础概念、与概率密度函数的关系、在最大似然估计以及机器学习中的应用。通过详尽的定义、举例和Python/PyTorch代码示例,文章旨在提供一个全面而深入的理解。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人
- 吴恩达机器学习笔记(2)
python小白22
一.逻辑回归1.什么是逻辑回归?逻辑回归是一种预测变量为离散值0或1情况下的分类问题,在逻辑回归中,假设函数。2.模型描述在假设函数中,,为实数,为Sigmoid函数,也叫Logistic函数。模型解释:,即就是对一个输入,的概率估计。损失函数的理解:所谓最大似然估计,就是我们想知道哪套参数组合对应的曲线最可能拟合我们观测到的数据,也就是该套参数拟合出观测数据的概率最大,而损失函数的要求是预测结果
- 【最大似然估计】详解概率论之最大似然估计
程序遇上智能星空
深入浅出讲解自然语言处理机器学习概率论机器学习算法
本文收录于《深入浅出讲解自然语言处理》专栏,此专栏聚焦于自然语言处理领域的各大经典算法,将持续更新,欢迎大家订阅!个人主页:有梦想的程序星空个人介绍:小编是人工智能领域硕士,全栈工程师,深耕Flask后端开发、数据挖掘、NLP、Android开发、自动化等领域,有较丰富的软件系统、人工智能算法服务的研究和开发经验。如果文章对你有帮助,欢迎关注、点赞、收藏、订阅。1、概率密度函数概率密度函数(Pro
- NLP——数学基础
晴晴_Amanda
自然语言处理
文章目录概率论基础概率(probability)最大似然估计(maximumlikelihoodestimation)条件概率(conditionalprobability)全概率公式(fullprobability)贝叶斯公式(Bayes’theorem)贝叶斯决策理论(Bayesiandecisiontheory)最小错误率贝叶斯决策最小风险贝叶斯决策二项式分布(binomialdistrib
- 贝叶斯分类器
抄书侠
总结本节从贝叶斯公式出发,通过最小化错误分类概率得到贝叶斯决策理论。进一步定义决策面和决策函数,基于正态分布讨论了贝叶斯分类的样子,但实际情况下,不一定是正态分布的,此时就需要对概率密度函数进行估计。最经典的,如果数据点都来自同一个分布,就是使用最大似然估计,如果数据点不是来自同一个分布,我们引入混合模型,采用EM算法来非线性迭代优化求解。之前都是假设属于某个分布来计算参数,但我们如果在没有假设基
- 自然语言处理——5.2 语言模型(参数估计)
SpareNoEfforts
两个重要概念:训练语料(trainingdata):用于建立模型,确定模型参数的已知语料。最大似然估计(maximumlikelihoodEvaluation,MLE):用相对频率计算概率的方法。最大似然估计求法对于n-gram,参数可由最大似然估计求得:其中,是历史串在给定语料中出现的次数,即,不管是什么。是在给定的条件下出现的相对频度,分子为与同出现的次数。举例例如,给定训练语料:“Johnr
- 深度学习如何入门?
dami_king
深度学习人工智能
入门深度学习需要系统性的学习路径和实践经验。以下是一些建议的步骤来快速入门并逐步深入理解深度学习:1.基础知识准备数学基础:理解和掌握线性代数(矩阵运算、向量空间)、微积分(梯度、导数)、概率论与统计学(概率分布、最大似然估计、贝叶斯推断)是至关重要的。编程基础:至少掌握一种编程语言,如Python,并熟悉其科学计算库如NumPy、Pandas以及可视化库如Matplotlib。2.机器学习预备知
- 机器学习数学基础
对许
基础理论机器学习概率论线性代数
机器学习基础1、标量、向量、矩阵、张量2、概率函数、概率分布、概率密度、分布函数3、向量的线性相关性4、最大似然估计5、正态分布(高斯分布)6、向量的外积(叉积)7、向量的内积(点积)8、超平面(H)1、标量、向量、矩阵、张量标量、向量、矩阵和张量是线性代数中不同维度的数学对象,它们之间的区别在于维数和结构:标量(Scalar):标量是一个数值,只有大小,没有方向。例如物理学中的时间、质量、温度等
- 【通信系统】MIMO阵列信号来向DOA估计实现~含FOCUSS、OMP、贝叶斯学习(SBL)等稀疏重构法和常规、子空间法、空间平滑滤波法
sys_rst_n
仿真MIMO天线阵列波达方向DOA估计MATLAB仿真子空间算法压缩感知与稀疏恢复
MIMO阵列目标信号来向估计原理与实现~基于常规法、子空间变换法和稀疏恢复法写在最前前言空间谱估计的历史发展仿真原理离散时间阵列信号模型波束形成矩阵(完备字典)回波生成空间平滑滤波传统方法CBF~常规波束成型Capon~最小方差无失真响应法ML~最大似然估计法子空间方法MUSIC~多重信号分类法ESPRIT~旋转不变子空间法最小二乘准则总体最小二乘准则稀疏恢复方法FOCUSS~欠定系统聚焦法OMP
- 【机器学习】损失函数
惊雲浅谈天
机器学习机器学习人工智能
L1平均绝对误差MAEL2均方误差MSE交叉熵CE用于度量两个概率分布之间的差异性信息。对交叉熵求最小值,也等效于求最大似然估计。在机器学习领域,我们令P(x)为预测集,Q(x)为真实数据集。
- 多维高斯分布(多元正态分布)的概率密度函数和最大似然估计
Chen_Chance
概率论机器学习算法
多元高斯分布的概率密度函数fμ,Σ(x)=1(2π)D/21∣Σ∣1/2exp{−12(x−μ)TΣ−1(x−μ)}f_{\mu,\Sigma}(x)=\frac{1}{(2\pi)^{D/2}}\frac{1}{|\Sigma|^{1/2}}exp\{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\}fμ,Σ(x)=(2π)D/21∣Σ∣1/21exp{−21(x
- 二维正态分布的最大似然估计_最大似然估计-高斯分布
燕山美发
二维正态分布的最大似然估计
前言:介绍了最简单的问题(这里都是玩具数据,为了方便理解才列出)0123456789101112X12344.24.44.64.85678y000011110000假设x=4.9用科学的办法估计y的分类。预备知识高斯分布的概率密度函数高斯分布的概率密度函数理解通常用「概率密度函数」代替概率,仅仅去比较大小。还有其他的分布,我也没有去深挖:)。而不是直接求出概率。这非常重要!!!求解问题写出这个数据
- 扩散模型:Diffusion Model原理剖析
WindyChanChan
DiffusionModel语言模型人工智能
DiffusionModel视频Training第5行是唯一需要解释的地方,x0x_{0}x0是干净的图片,ϵθ\epsilon_{\theta}ϵθ是前面说的NoisePredictor,它的输入包括加噪声之后的图像(红色框)以及时序ttt,ϵ\epsilonϵ是训练的target也就是添加的噪声。它其实与前面我们提到的一步步加噪的过程不一样,而是一次就可以了。Inference最大似然估计倒数
- 图像生成之变分自动编码器(VAE)
Wilson_Hank
机器学习人工智能
简要介绍“概率图模型+神经网络”、“EM算法、变分推断”自动编码器是一种无监督学习方法,将高维的原始数据映射到一个低维特征空间,然后从低维特征学习重建原始的数据。变分自编码器(VariationalAutoencoder,简称VAE)是一种生成模型,结合了自编码器和概率图模型的思想。VAE在建模生成模型时是显式地定义了条件概率分布,通过最大似然估计来学习生成模型的参数,使其能够生成与训练数据相似的
- 逻辑回归(解决分类问题)
Visual code AlCv
人工智能入门逻辑回归回归分类
定义:逻辑回归是一种用于解决分类问题的统计学习方法。它通过对数据进行建模,预测一个事件发生的概率。逻辑回归通常用于二元分类问题,即将数据分为两个类别。它基于线性回归模型,但使用了逻辑函数(也称为S形函数)来将输出限制在0到1之间,表示事件发生的概率。逻辑回归可以通过最大似然估计或梯度下降等方法来进行参数估计,从而得到一个可以用于分类的模型。一、逻辑回归入门在分类肿瘤的例子中,我们将肿瘤分为恶性肿瘤
- EM算法(expectation maximization algorithms)揭秘
アナリスト
算法机器学习人工智能聚类概率论
EM算法篇EM算法简介EM算法,也叫expectationmaximizationalgorithms,是在包含隐变量(未观察到的潜在变量)的概率模型中寻找参数最大似然估计(也叫最大后验估计)的迭代算法。EM算法在期望(E步骤)和最大化(M步骤)之间交替执行,前者计算模型参数当前估计的对数似然期望函数,后者对E步骤中找到的预期对数似然计算最大化,然后使用参数新估计值来确定下一个E步骤中隐变量的分布
- HMM算法(Hidden Markov Models)揭秘
アナリスト
算法机器学习自然语言处理语音识别语言模型
序列数据机器学习的数据通常有两类,最常见的是独立同分布数据,其次就是序列数据。对于前者,一般出现在各种分类/回归问题中,其最大似然估计是所有数据点的概率分布乘积。对于后者,一般出现在各种时间序列问题中,比如在特定时间特定区域内的降雨量数据、每天的货币汇率数据,以及上下文相关的,如语音识别中的声学特征数据、文本的字符序列数据、生物领域如DNA数据等。需要指出,本文介绍的HMM模型适用于一切序列问题,
- PLSA 和 LDA 对比?
爱打网球的小哥哥一枚吖
信息检索人工智能机器学习
PLSA和LDA都是主题模型,但PLSA是基于最大似然估计的生成式模型,而LDA是基于贝叶斯推断的生成式模型。LDA具有更好的泛化性能和对稀疏数据的建模能力,但计算复杂度较高。在实际应用中,可以根据具体需求选择适合的模型。
- 最大似然估计与贝叶斯
冷水调画
最大似然估计(maximumlikelihoodestimates,MLE):一种确定模型参数值的方法。确定参数值的过程,是找到能最大化模型产生真实观察数据可能性的那一组参数。过程:通过观察数据分布(如8,9.5,11),预估一个模型(比如正态分布,这个判断通常来自于领域内专家),然后求出在该模型下发生此数据分布概率最大的模型(求参数组合-均值与方差),这样就确定了这个高斯模型(的参数组合),我们
- Arxiv网络科学论文摘要6篇(2019-08-02)
ComplexLY
MIMO干扰信道的最大-最小公平性设计:最小化最大化方法;从媒体事件报告中监督学习全球风险网络激活;跨域网络表示;基于友谊悖论采样的幂律度分布的最大似然估计;网络上的采样:估计不完整图的特征向量中心性;用归一化集聚系数测量网络的集聚强度;MIMO干扰信道的最大-最小公平性设计:最小化最大化方法原文标题:Max-MinFairnessDesignforMIMOInterferenceChannels
- 【手搓深度学习算法】用逻辑回归分类双月牙数据集-非线性数据篇
精英的英
天网计划算法深度学习逻辑回归
用逻辑回归分类-非线性数据篇前言逻辑斯蒂回归是一种广泛使用的分类方法,它是基于条件概率密度函数的最大似然估计的。它的主要思想是将输入空间划分为多个子空间,每个子空间对应一个类别。在每个子空间内部,我们假设输入变量的取值与类别标签的概率成正比。在逻辑斯蒂回归中,我们首先通过数据进行线性回归,得到的结果再通过sigmoid函数转化为概率,这样就可以得到每个类别的概率。然后,我们可以通过设置一个阈值,如
- 【手搓深度学习算法】用逻辑回归分类Iris数据集-线性数据篇
精英的英
天网计划算法深度学习逻辑回归
用逻辑回归分类Iris数据集-线性数据篇前言逻辑斯蒂回归是一种广泛使用的分类方法,它是基于条件概率密度函数的最大似然估计的。它的主要思想是将输入空间划分为多个子空间,每个子空间对应一个类别。在每个子空间内部,我们假设输入变量的取值与类别标签的概率成正比。在逻辑斯蒂回归中,我们首先通过数据进行线性回归,得到的结果再通过sigmoid函数转化为概率,这样就可以得到每个类别的概率。然后,我们可以通过设置
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&