pytorch-parameter initialization


torch.nn.init

weight.data.fill_(1)
bias.data.fill_(0)

weight.data.uniform_(-stdv, stdv)

1. 

params = list(net.parameters())


2. 

conv2params = list(net.conv2.parameters())

kernels  conv2params[0]

bias conv2params[1]


3.

        for m in self.modules():

            if isinstance(m, nn.Conv2d):

                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels

                m.weight.data.normal_(0, math.sqrt(2. / n))

            elif isinstance(m, nn.BatchNorm2d):

                m.weight.data.fill_(1)

                m.bias.data.zero_()


4.

def weights_init(m):

    classname = m.__class__.__name__

    if classname.find('Conv') != -1:

        m.weight.data.normal_(0.0, 0.02)

    elif classname.find('BatchNorm') != -1:

        m.weight.data.normal_(1.0, 0.02)

        m.bias.data.fill_(0)

5. 

def weight_init(m): 
	if isinstance(m, nn.Linear):
		size = m.weight.size()
		fan_out = size[0] # number of rows
		fan_in = size[1] # number of columns
		variance = np.sqrt(2.0/(fan_in + fan_out))
		m.weight.data.normal_(0.0, variance)

net = Residual() # generate an instance network from the Net class
net.apply(weights_init) # apply weight init

The apply function will search recursively for all the modules inside your network, and will call the function on each of them. So allLinear layers you have in your model will be initialized using this one call.


6. 

  • If you want to load a model's state_dict into another model (for example to fine-tune a pre-trained network), load_state_dict was strict on matching the key names of the parameters. Now we provide a strict=False option to load_state_dict where it only loads in parameters where the keys match, and ignores the other parameter keys.






---------------------------------------------------reference--------------------------------

1. https://discuss.pytorch.org/t/weight-initilzation/157/2


你可能感兴趣的:(PyTorch)