本文对 KubeEdge 的 led 灯示例进行测试。
KubeEdge 官方示例文件仓库为 https://github.com/kubeedge/examples ,将其下载到$GOPATH/src/github.com/kubeedge/ 目录,本文所用目录为 led-raspberrypi 。
本文所有修改见仓库 https://github.com/latelee/kube-examples/tree/master/led-raspberrypi 。
下面按测试步骤描述。
sample-crds:crds 配置,指定了调度的节点、GPIO号,LED默认状态,等等。下称设备模型。
configuration:配置相关,需要读取 deviceProfile.json (运行时生成)和 config.yaml 文件。
light_mapper.go:主程序文件,主要匹配 crds 设备模型,并与真实硬件交互。与硬件交互主要使用github.com/stianeikeland/go-rpio/
包,由于笔者没硬件环境,故其操作 GPIO 的代码注释掉,仅作示例。
Dockerfile:生成 docker 镜像文件,笔者扩展了 arm 平台(注:笔者去掉了硬件操作,故代码可适用不同平台)。
deployment.yaml:deployment 配置文件,指定调度节点、镜像和 configMap (如果不指定,生成不了 json 文件)。
理论上,不同的硬件,其操作不同,因此需要不同的 crds 为匹配。这也是为什么 crds 中要指定节点的原因。不过,笔者认为,实践中,可能存在批量操作,即同一批硬件,其硬件相同,功能相同,因此使用的程序也相同,如温度采集等。此情况下,可以通过节点的 label 来匹配调度的节点。当然,这不是本文关注的重点。
笔者修改了 Makefile,如下:
# make led_light_mapper
.PHONY: default led_light_mapper
led_light_mapper:
export GOARCH=amd64; export GOOS="linux"; export GOARM=""; export CGO_ENABLED=1; export CC=cc; \
go build light_mapper.go
docker build -t latelee/led-light-mapper-x86:v1.1 . -f Dockerfile
export GOARCH=arm; export GOOS="linux"; export GOARM=7; export CGO_ENABLED=1; export CC=arm-linux-gnueabihf-gcc; \
go build light_mapper.go
docker build -t latelee/led-light-mapper-arm:v1.1 . -f Dockerfile-arm
分别使用不同编译器编译,并修改 docker 镜像地址。接着合并镜像:
docker push latelee/led-light-mapper-x86:v1.1
docker push latelee/led-light-mapper-arm:v1.1
export DOCKER_CLI_EXPERIMENTAL=enabled
docker manifest create latelee/led-light-mapper:v1.1 latelee/led-light-mapper-x86:v1.1 latelee/led-light-mapper-arm:v1.1
docker manifest annotate latelee/led-light-mapper:v1.1 latelee/led-light-mapper-x86:v1.1 --os linux --arch x86_64
docker manifest annotate latelee/led-light-mapper:v1.1 latelee/led-light-mapper-arm:v1.1 --os linux --arch armv7l
docker manifest push latelee/led-light-mapper:v1.1
kubeedge在部署时已经创建了crds了,此处查看:
# kubectl get crds
NAME CREATED AT
clusterobjectsyncs.reliablesyncs.kubeedge.io 2020-02-20T08:28:32Z
devicemodels.devices.kubeedge.io 2019-12-31T08:41:34Z
devices.devices.kubeedge.io 2019-12-31T08:41:34Z
objectsyncs.reliablesyncs.kubeedge.io 2020-02-20T08:28:32Z
再创建led的crds。
cd $GOPATH/src/github.com/kubeedge/examples/led-raspberrypi
cd sample-crds
vim led-light-device-instance.yaml
修改 led-light-device-instance.yaml 文件,将节点改为 latelee.org.ttucon-2142ec
。
创建:
# kubectl apply -f .
查看
# kubectl get deviceModel
NAME AGE
led-light 28h
# kubectl get device
NAME AGE
led-light-instance-01 28h
查看详情:
# kubectl describe devices.devices.kubeedge.io led-light-instance-01
修改 deployment.yaml,如下:
apiVersion: apps/v1
kind: Deployment
metadata:
name: led-light-mapper-deployment
spec:
replicas: 1
selector:
matchLabels:
app: led-light-mapper
template:
metadata:
labels:
app: led-light-mapper
spec:
nodeName: latelee.org.ttucon-2142ec #edge-node2
hostNetwork: true
containers:
- name: led-light-mapper-container
image: latelee/led-light-mapper:v1.1
imagePullPolicy: IfNotPresent
securityContext:
privileged: true
volumeMounts:
- name: config-volume
mountPath: /opt/kubeedge/
volumes:
- name: config-volume
configMap:
name: device-profile-config-edge-node2
restartPolicy: Always
部署:
# kubectl apply -f deployment.yaml
等待调度完成。
修改 LED 状态值,把OFF改为ON,:
vim led-light-device-instance.yaml
再更新配置。
注:
如果此时修改led-light-device-model.yaml
的引脚号,再更新,是不成功的。
在节点机器上,执行docker ps
查看容器。再进入容器查看json文件:
# docker 4bc0f93a0174
/ # cat /opt/kubeedge/deviceProfile.json
{"deviceInstances":[{"id":"led-light-instance-01","name":"led-light-instance-01","model":"led-light"}],"deviceModels":[{"name":"led-light","properties":[{"name":"power-status","dataType":"string","description":"Indicates whether the led light is ON/OFF","accessMode":"ReadWrite","defaultValue":"OFF"},{"name":"gpio-pin-number","dataType":"int","description":"Indicates whether the GPIO pin to which LED is connected","accessMode":"ReadOnly","defaultValue":18}]}],"protocols":[{"protocol_config":null}]}
查看日志(加-f):
docker logs -f 4bc0f93a0174
I0318 03:54:21.558189 1 light_mapper.go:242] Watching on the device twin values for device: led-light-instance-01
I0318 03:54:22.559353 1 light_mapper.go:272] Actual values are in sync with Expected value
I0318 03:54:22.559374 1 light_mapper.go:242] Watching on the device twin values for device: led-light-instance-01
I0318 03:54:23.560669 1 light_mapper.go:272] Actual values are in sync with Expected value
I0318 03:54:23.560695 1 light_mapper.go:242] Watching on the device twin values for device: led-light-instance-01
I0318 03:54:24.561883 1 light_mapper.go:248] Expected Value : ON
I0318 03:54:24.561909 1 light_mapper.go:252] Actual Value: OFF
I0318 03:54:24.561913 1 light_mapper.go:254] Equating the actual value to expected value
I0318 03:54:24.561918 1 light_mapper.go:257] Turning ON the light
I0318 03:54:24.561922 1 light_driver.go:11] TurnON pin: 18
I0318 03:54:24.562033 1 light_mapper.go:242] Watching on the device twin values for device: led-light-instance-01
I0318 03:54:25.563141 1 light_mapper.go:248] Expected Value : ON
I0318 03:54:25.563164 1 light_mapper.go:252] Actual Value: OFF
I0318 03:54:25.563168 1 light_mapper.go:254] Equating the actual value to expected value
I0318 03:54:25.563172 1 light_mapper.go:257] Turning ON the light
I0318 03:54:25.563195 1 light_driver.go:11] TurnON pin: 18
I0318 03:54:25.563281 1 light_mapper.go:242] Watching on the device twin values for device: led-light-instance-01
从日志中看到 GPIO 引脚的电平变化了。
如果不使用 KubeEdge 调度的话,容器报错:
Error while reading from config map Error while reading from config map open /opt/kubeedge/deviceProfile.json: no such file or directory