- 大规模图计算引擎的分区与通信优化:负载均衡与网络延迟的解决方案
LCG元
系统服务架构负载均衡网络运维
目录一、系统架构设计与核心流程1.1原创架构图解析1.2双流程对比分析二、分区策略优化实践2.1动态权重分区算法实现(Python)三、通信优化机制实现3.1基于RDMA的通信层实现(TypeScript)四、性能对比与调优4.1分区策略基准测试五、生产级部署方案5.1Kubernetes部署配置(YAML)5.2安全审计配置六、技术前瞻与演进附录:完整技术图谱一、系统架构设计与核心流程1.1原创
- 【零基础学AI】第22讲:PyTorch入门 - 动态图计算与图像分类器实战
1989
0基础学AI人工智能pytorchpython机器学习sklearn深度学习
本节课你将学到理解PyTorch的核心概念和优势掌握张量(Tensor)的基本操作学会使用动态计算图构建神经网络实现一个完整的图像分类器项目训练模型并进行预测开始之前环境要求Python3.8+建议使用GPU(可选,CPU也能运行)内存:至少4GB需要安装的包#CPU版本(推荐新手)pipinstalltorchtorchvisionmatplotlibpillow#GPU版本(如果有NVIDIA
- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- 从0开始深度学习(6)——Pytorch动态图机制(前向传播、反向传播)
青石横刀策马
从头学机器学习深度学习pytorch人工智能
PyTorch的动态计算图机制是其核心特性之一,它使得深度学习模型的开发更加灵活和高效。0计算图计算图(ComputationGraph)是一种用于表示数学表达式或程序流程的图形结构,可以将复杂的表达式分解成一系列简单的操作,并以节点和边的形式展示这些操作及其之间的关系,能够清晰地展示计算过程中的依赖关系节点(Nodes):表示变量或常量,也可以表示操作(如加法、乘法等)。边(Edges):表示数
- Python 自动化测试之滑块验证码处理
Looooking
Pythonpython滑块验证码自动化测试
RPA机器人流程自动化测试时,登录环节经常会出现各种拦路虎,比如像下面的滑块验证码。那么,如何通过Python的工具自动破解这些滑动验证码呢?破解思路关于滑动验证码破解的思路大体上来讲就是以下的步骤:获取背景图和滑块图计算滑块在背景图的位置根据缩放比例及滑块初始位置计算真实的滑动距离模拟拖动滑块,通过验证关于上面这种的滑块验证,滑块和缺口背景都是分别是一张独立的图片,我们可以把这两张图片下载下来,
- YOLOv12改进策略【Neck】| 替换颈部结构为TPAMI 2025的Hyper-YOLO
Limiiiing
YOLOv12改进专栏YOLO目标检测深度学习计算机视觉
一、本文介绍Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。本文记录如何将Hyper-YOLO模型与YOLOv12结合。专栏目录:YOLOv12改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv12改进专栏——以发表论文的角度,快速准
- YOLOv10改进策略【Neck】| 替换颈部结构为TPAMI 2025的Hyper-YOLO
Limiiiing
YOLOv10改进专栏YOLO计算机视觉目标检测深度学习
一、本文介绍Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。本文记录如何将Hyper-YOLO模型与YOLOv10结合。专栏目录:YOLOv10改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv10改进专栏——以发表论文的角度,快速准
- 数据库领域:图数据库的分布式图存储系统
数据库管理艺术
数据库分布式wpfai
数据库领域:图数据库的分布式图存储系统关键词:图数据库、分布式存储、图计算、Neo4j、JanusGraph、数据分片、一致性哈希摘要:本文深入探讨了分布式图存储系统的核心原理和实现技术。我们将从图数据库的基本概念出发,分析分布式图存储面临的独特挑战,详细讲解主流分布式图存储架构的设计思路,包括数据分片策略、查询处理机制和一致性保证。文章还将通过实际代码示例展示如何构建一个简单的分布式图存储系统,
- OpenCV CUDA模块直方图计算------在 GPU 上计算输入图像的直方图(histogram)函数histEven()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该函数用于在GPU上计算输入图像的直方图(histogram)。它将像素值区间均匀划分为若干个bin(桶),并统计每个bin中像素的数量。适用于单通道图像(如灰度图或某个颜色通道)。使用等间距的分箱方式(即“均匀直方图”)。支持8U和32S类型的图像。函数原型vo
- OpenCV CUDA模块直方图计算------生成一组均匀分布的灰度级函数evenLevels()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该函数主要用于为直方图均衡化、CLAHE等图像处理算法生成一组等间距的灰度区间边界值(bins或levels),这些边界值可用于后续将图像划分为多个区域进行处理。函数原型voidcv::cuda::evenLevels(OutputArraylevels,intn
- 视频 | 对等关税砸盘,全球市场惨跌,图计算暗藏破局密码
XAI嬴图
嬴图文库大数据数据库图数据库图计算金融
对等关税砸盘,全球市场惨跌,图计算暗藏破局密码近日,因担忧美国所谓“对等关税”加剧世界经济衰退风险,资本货币市场仿佛“雷曼时刻”再现,全球主要交易品种价格集体跳水。为什么会这样呢?特朗普刚扇动一下蝴蝶翅膀,全球就掀起了一场飓风?学者们在长期的研究中发现,任何风险都不是孤立存在的。当下,量化交易盛行,很多交易都以微秒计时,一旦某一品种价格下跌,与之关联的品种也会殃及池鱼,就容易引发连锁反应。不同的风
- 大数据技术的主要方向及其应用详解
百锦再@新空间
包罗万象大数据python网络linuxdjangopygame
文章目录一、大数据技术概述二、大数据存储与管理方向1.分布式文件系统2.NoSQL数据库3.数据仓库技术三、大数据处理与分析方向1.批处理技术2.流处理技术3.交互式分析4.图计算技术四、大数据机器学习方向1.分布式机器学习2.深度学习平台3.自动机器学习(AutoML)五、大数据可视化方向1.商业智能工具2.大数据可视化库3.增强分析六、大数据安全与治理方向1.数据安全2.元数据管理3.数据质量
- OpenCV CUDA模块中矩阵操作------归一化与变换操作
村北头的码农
OpenCVopencv人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述在OpenCV的CUDA模块中,normalize和rectStdDev函数用于对矩阵进行归一化处理和基于积分图计算矩形区域的标准差。函数介绍1.归一化处理normalize函数原型voidcv::cuda::normalize(InputArraysrc,//输
- 第二十八节:直方图处理- 直方图计算与绘制
摸鱼许可证
从零开始学习OpenCVopencv计算机视觉
直方图是数字图像处理的基石工具,在计算机视觉领域扮演着关键角色。通过本文,您将深入掌握使用OpenCV进行直方图计算的底层原理,并学会多种专业的直方图可视化方法。无论您是刚入门的新手还是希望提升技能的开发者,这里都有值得探索的进阶技巧。一、直方图基础理论1.1什么是图像直方图图像直方图是像素强度分布的统计学可视化工具,以二维图表形式展示图像中各个亮度级别的像素数量分布情况。在8位灰度图像中,横轴表
- TDengine 做为 Spark 数据源
TDengine (老段)
TDengine生态接入tdenginesparkajax大数据时序数据库物联网数据库
简介ApacheSpark是开源大数据处理引擎,它基于内存计算,可用于批、流处理、机器学习、图计算等多种场景,支持MapReduce计算模型及丰富计算操作符、函数等,在大超大规模数据上具有强大的分布式处理计算能力。通过TDengineJavaconnector,Spark可快速读取TDengine数据,利用Spark强大引擎,扩展TDengine数据处理计算能力,同时通过它,Spark亦可把数据写
- spark基本介绍
祈533
虚拟机
Spark是基于内存计算的分布式大数据处理框架,由加州大学伯克利分校AMPLab开发,现已成为Apache顶级项目。以下是其核心要点:核心特点1.内存计算:数据可驻留内存,大幅提升迭代计算(如机器学习、图计算)效率,比HadoopMapReduce快数倍至数十倍。2.多语言支持:原生支持Scala、Java、Python、R,提供统一API。3.一站式生态:集成SparkSQL(结构化数据)、Sp
- Hadoop总结
Ajekseg
面试学习路线阿里巴巴android前端后端
目录大数据概述Hadoop大数据开发平台资源管理YARN分布式文件系统HDFS非关系型数据库NOSQL分布式数据库HBASE批处理和MapReduce数据仓库查询分析和Hive基于内存计算的Spark流计算和Flink图计算和PREGELHadoop常用命令总结大数据概述大数据的4V:大量化、快速化、多样化、价值密度低。大数据对思维方式的影响:颠覆了传统的思维方式——全样而非抽样、效率而非精确、相
- Apache Spark:SparkGraphX图数据处理技术教程
kkchenjj
数据挖掘apachespark大数据
ApacheSpark:SparkGraphX图数据处理技术教程ApacheSpark:SparkGraphX图数据处理介绍ApacheSpark和SparkGraphXSparkGraphX概述ApacheSpark是一个用于大规模数据处理的开源集群计算框架,它提供了数据并行处理和容错能力。SparkGraphX是Spark生态系统中用于图计算和图并行计算的模块。它设计用于处理大规模图数据集,提
- Spark GraphX图计算引擎原理与代码实例讲解
AI天才研究院
计算AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
SparkGraphX图计算引擎原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词Spark,GraphX,图计算,图算法,分布式计算1.背景介绍1.1问题的由来随着互联网的快速发展和大数据时代的到来,数据规模和复杂度呈现出爆炸性增长。传统的计算模型在处理大规模数据时遇到了性能瓶颈。图计算作为一种新兴的计算范式,能够有效处理复杂
- spark graphx自用学习笔记及pyspark项目实战(基于GraphX的航班飞行网图分析)
GDUT-orzzzzzz
学习笔记sparkpython大数据
这里写自定义目录标题0.前言1.概念1.1图计算的优势1.2图存储格式1.3GraphX存储模式1.4普通概念2.图的构建(待补充)2.1构建图的方法2.2构建图的过程3.图的操作4.算法5.实战5.1项目要求5.2环境5.3安装5.4代码5.5最终结果参考链接0.前言本篇博客自用,部分内容只包含概念,并且博主本身有一定spark和图论基础,部分模糊的地方,可自行查询。1.概念1.1图计算的优势基
- 微众银行:使用图数据库进行全局数据血缘治理
杭州悦数
数据库
微众银行是中国首家民营银行,目前个人客户已突破2.5亿人,企业法人客户超过170万家。微众银行基于悦数图数据库搭建全行级图平台,并将图指标、图计算纳入风控策略,深度探索潜在的交易风险。业务挑战:互联网交易数据指数级增长,原有数据库性能不足为了应对业务的扩展和数据来源的增长以及指数级增长的互联网金融交易风险,微众银行建立了内部一站式大数据管理平台WeDataSphere。其基础平台由数据交换、数据分
- 大数据(5)(基础概念)Spark从入门到实战:核心原理与大数据处理实战案例
一个天蝎座 白勺 程序猿
大数据开发从入门到实战合集大数据spark分布式
目录一、背景介绍1.为什么需要Spark?2.Spark的诞生:二、Spark核心原理1.四大核心特性2.核心架构3.执行流程三、Spark实战案例案例1:单词计数(WordCount)案例2:实时流处理(StructuredStreaming)案例3:SparkSQL数据分析(电商用户行为统计)案例4:MLlib机器学习(鸢尾花分类)案例5:GraphX图计算(社交网络影
- LangGraph 0.3.21 重磅更新!远程中断、修复优化一网打尽,开发者必看!
福大大架构师每日一题
文心一言vschatgptdeepseekchatgpt
作为LangChain生态中备受关注的图计算框架,LangGraph再次迎来重要更新!0.3.21版本不仅修复了关键问题,还增强了远程图中断的支持,为开发者提供了更稳定、更高效的体验。核心更新亮点远程图中断修复修复了RemoteGraph中断反序列化的问题,确保分布式场景下的稳定性。新增测试用例(#4048),进一步验证远程中断的可靠性。️Topic.update返回类型修复修复了Topic.up
- 开源深度学习框架PyTorch
深海水
人工智能行业发展IT应用探讨深度学习开源pytorch人工智能python机器训练
一、PyTorch介绍PyTorch是一个开源的深度学习框架,由Facebook的人工智能研究团队(FAIR)开发。它以动态图计算(DynamicComputationGraph)为核心,提供灵活的深度学习建模能力,广泛评估计算机视觉、自然语言处理、强化学习等领域。PyTorch的主要特点1.动态图计算(动态计算图)计算图在运行时构建,支持动态调整,适用于复杂任务。2.强大的GPU加速使用CUDA
- 深度学习框架PyTorch——从入门到精通(5)自动微分
Fansv587
深度学习pytorch人工智能
使用torch.autograd自动微分张量、函数和计算图计算梯度禁用梯度追踪关于计算图的更多信息张量梯度和雅可比乘积在训练神经网络时,最常用的算法是反向传播。在该算法中,参数(模型权重)根据损失函数的梯度相对于给定参数进行调整。为了计算这些梯度,PyTorch有一个内置的微分引擎,名为torch.autograd。它支持为任何计算图自动计算梯度。考虑最简单的一层神经网络,具有输入x、参数w和b以
- PyTorch 深度学习快速入门教程
有人给我介绍对象吗
AI论文写作深度学习pytorch人工智能
PyTorch深度学习快速入门教程PyTorch是一个灵活且易用的深度学习框架,支持动态图计算,广泛用于学术研究和工业应用。本教程将带你快速掌握PyTorch的基本用法,涵盖张量(Tensor)操作、自动求导(Autograd)、构建神经网络以及模型训练。1.安装PyTorch在终端或命令行中运行以下命令安装PyTorch:pipinstalltorchtorchvisiontorchaudio安
- 深度学习框架之主流学习框架
uu1224
深度学习学习人工智能机器学习神经网络
深度学习框架是一类专门设计用来简化和加速神经网络模型开发过程的软件工具。它们提供了构建、训练和部署神经网络所需的各种功能和库。以下是一些主流的深度学习框架及其特点:TensorFlow:由Google开发,是一个广泛使用的开源深度学习框架。它以强大的图计算模型和分布式计算能力著称,并且通过高级API如Keras,为用户提供了易于上手的开发体验。PyTorch:由Facebook开发,以其动态计算图
- Spark技术系列(一):初识Apache Spark——大数据处理的统一分析引擎
数据大包哥
#Spark大数据
Spark技术系列(一):初识ApacheSpark——大数据处理的统一分析引擎1.背景与核心价值1.1大数据时代的技术演进MapReduce的局限性:磁盘迭代计算、中间结果落盘导致的性能瓶颈Spark诞生背景:UCBerkeleyAMPLab实验室为解决复杂迭代计算需求研发(2010年开源)技术定位:基于内存的通用分布式计算框架(支持批处理、流计算、机器学习、图计算等)1.2Spark内置模块S
- Spark之PySpark
james二次元
大数据SparkPythonPySpark
PySpark是ApacheSpark的PythonAPI,它允许开发者使用Python编程语言进行大规模数据处理和分析。ApacheSpark是一个快速、通用、可扩展的大数据处理引擎,支持批处理、流处理、机器学习、图计算等多种数据处理模式。PySpark使得Python开发者能够利用Spark强大的分布式计算能力,处理大数据集,并执行高效的并行计算。一、PySpark核心概念1.RDD(弹性分布
- 如何使用GraphX在Spark中进行图计算
python资深爱好者
spark大数据分布式
GraphX是ApacheSpark的一个图计算框架,它允许开发者在分布式环境中进行大规模的图数据处理和分析。以下是如何使用GraphX在Spark中进行图计算的基本步骤:1.环境准备首先,确保你已经安装了ApacheSpark,并且你的Spark版本支持GraphX。GraphX是Spark的一个组件,因此通常与Spark一起安装。2.导入GraphX库在你的Spark应用程序中,你需要导入Gr
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比