在每一轮的训练过程中,Batch Gradient Descent算法用整个训练集的数据计算cost fuction的梯度,并用该梯度对模型参数进行更新:
Θ = Θ − α ⋅ ▽ Θ J ( Θ ) \Theta = \Theta -\alpha \cdot \triangledown_\Theta J(\Theta ) Θ=Θ−α⋅▽ΘJ(Θ)
优点:
缺点:
和批梯度下降算法相反,Stochastic gradient descent 算法每读入一个数据,便立刻计算cost fuction的梯度来更新参数:
Θ = Θ − α ⋅ ▽ Θ J ( Θ ; x ( i ) , y ( i ) ) \Theta = \Theta -\alpha \cdot \triangledown_\Theta J(\Theta ;x^{(i)},y^{(i)}) Θ=Θ−α⋅▽ΘJ(Θ;x(i),y(i))
优点:
缺点:
mini-batch Gradient Descent的方法是在上述两个方法中取折衷, 每次从所有训练数据中取一个子集(mini-batch) 用于计算梯度:
Θ = Θ − α ⋅ ▽ Θ J ( Θ ; x ( i : i + n ) , y ( i : i + n ) ) \Theta = \Theta -\alpha \cdot \triangledown_\Theta J(\Theta ;x^{(i:i+n)},y^{(i:i+n)}) Θ=Θ−α⋅▽ΘJ(Θ;x(i:i+n),y(i:i+n))
Mini-batch Gradient Descent在每轮迭代中仅仅计算一个mini-batch的梯度,不仅计算效率高,而且收敛较为稳定。该方法是目前深度学训练中的主流方法
上述三个方法面临的主要挑战如下:
SGD方法的一个缺点是其更新方向完全依赖于当前batch计算出的梯度,因而十分不稳定。Momentum算法借用了物理中的动量概念,它模拟的是物体运动时的惯性,即更新的时候在一定程度上保留之前更新的方向,同时利用当前batch的梯度微调最终的更新方向。这样一来,可以在一定程度上增加稳定性,从而学习地更快,并且还有一定摆脱局部最优的能力:
v t = γ ⋅ v t − 1 + α ⋅ ▽ Θ J ( Θ ) v_{t} = \gamma \cdot v_{t-1} + \alpha \cdot \triangledown_\Theta J(\Theta ) vt=γ⋅vt−1+α⋅▽ΘJ(Θ)
Θ = Θ − v t \Theta = \Theta-v_{t} Θ=Θ−vt
Momentum算法会观察历史梯度 v t − 1 v_{t-1} vt−1,若当前梯度的方向与历史梯度一致(表明当前样本不太可能为异常点),则会增强这个方向的梯度,若当前梯度与历史梯方向不一致,则梯度会衰减。**一种形象的解释是:**我们把一个球推下山,球在下坡时积聚动量,在途中变得越来越快,γ可视为空气阻力,若球的方向发生变化,则动量会衰减。
在小球向下滚动的过程中,我们希望小球能够提前知道在哪些地方坡面会上升,这样在遇到上升坡面之前,小球就开始减速。这方法就是Nesterov Momentum,其在凸优化中有较强的理论保证收敛。并且,在实践中Nesterov Momentum也比单纯的 Momentum 的效果好:
v t = γ ⋅ v t − 1 + α ⋅ ▽ Θ J ( Θ − γ v t − 1 ) v_{t} = \gamma \cdot v_{t-1} + \alpha \cdot \triangledown_\Theta J(\Theta -\gamma v_{t-1}) vt=γ⋅vt−1+α⋅▽ΘJ(Θ−γvt−1)
Θ = Θ − v t \Theta = \Theta-v_{t} Θ=Θ−vt
其核心思想是:注意到 momentum 方法,如果只看 γ * v 项,那么当前的 θ经过 momentum 的作用会变成 θ-γ * v。因此可以把 θ-γ * v这个位置看做是当前优化的一个”展望”位置。所以,可以在 θ-γ * v求导, 而不是原始的θ。
上述方法中,对于每一个参数 θ i θ_i θi 的训练都使用了相同的学习率α。Adagrad算法能够在训练中自动的对learning rate进行调整,对于出现频率较低参数采用较大的α更新;相反,对于出现频率较高的参数采用较小的α更新。因此,Adagrad非常适合处理稀疏数据。
我们设 g t , i g_{t,i} gt,i为第t轮第i个参数的梯度,即 g t , i = ▽ Θ J ( Θ i ) g_{t,i}=\triangledown_\Theta J(\Theta_i) gt,i=▽ΘJ(Θi)。因此,SGD中参数更新的过程可写为:
Θ t + 1 , i = Θ t , i − α ⋅ g t , i \Theta_{t+1,i} =\Theta_{t,i}-\alpha \cdot g_{t,i} Θt+1,i=Θt,i−α⋅gt,i
Adagrad在每轮训练中对每个参数 θ i θ_i θi的学习率进行更新,参数更新公式如下:
Θ t + 1 , i = Θ t , i − α G t , i i + ϵ ⋅ g t , i \Theta_{t+1,i} =\Theta_{t,i}- \frac{\alpha}{\sqrt{G_{t,ii}+\epsilon }}\cdot g_{t,i} Θt+1,i=Θt,i−Gt,ii+ϵα⋅gt,i
其中, G t ∈ R d × d G_t\in \mathbb{R}^{d\times d} Gt∈Rd×d为对角矩阵,每个对角线位置 i , i i,i i,i为对应参数 θ i θ_i θi从第1轮到第t轮梯度的平方和。ϵ是平滑项,用于避免分母为0,一般取值1e−8。Adagrad的缺点是在训练的中后期,分母上梯度平方的累加将会越来越大,从而梯度趋近于0,使得训练提前结束。
RMSprop是Geoff Hinton提出的一种自适应学习率方法。Adagrad会累加之前所有的梯度平方,而RMSprop仅仅是计算对应的平均值,因此可缓解Adagrad算法学习率下降较快的问题。
E [ g 2 ] t = 0.9 E [ g 2 ] t − 1 + 0.1 g t 2 E[g^2]_t=0.9E[g^2]_{t-1}+0.1g_t^2 E[g2]t=0.9E[g2]t−1+0.1gt2
Θ t + 1 = Θ t − α E [ g 2 ] t + ϵ ⋅ g t \Theta_{t+1} =\Theta_{t}- \frac{\alpha}{\sqrt{E[g^2]_t+\epsilon }}\cdot g_{t} Θt+1=Θt−E[g2]t+ϵα⋅gt
Adam(Adaptive Moment Estimation)是另一种自适应学习率的方法。它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:
m t = β 1 m t − 1 + ( 1 − β 1 ) g t m_t=\beta_1m_{t-1}+(1-\beta_1)g_t mt=β1mt−1+(1−β1)gt
v t = β 2 v t − 1 + ( 1 − β 2 ) g t 2 v_t=\beta_2v_{t-1}+(1-\beta_2)g_t^2 vt=β2vt−1+(1−β2)gt2
m ^ t = m t 1 − β 1 t \hat{m}_t=\frac{m_t}{1-\beta_1^t} m^t=1−β1tmt
v ^ t = v t 1 − β 2 t \hat{v}_t=\frac{v_t}{1-\beta_2^t} v^t=1−β2tvt
Θ t + 1 = Θ t − α v ^ t + ϵ m ^ t \Theta_{t+1} =\Theta_{t}- \frac{\alpha}{\sqrt{\hat{v}_t }+\epsilon }\hat{m}_t Θt+1=Θt−v^t+ϵαm^t
其中, m t m_t mt, v t v_t vt分别是对梯度的一阶矩估计和二阶矩估计,可以看作对期望 E [ g t ] E[g_t] E[gt], E [ g t 2 ] E[g_t^2] E[gt2]的近似; m t ^ \hat{m_t} mt^, v t ^ \hat{v_t} vt^是对 m t m_t mt, v t v_t vt的校正,这样可以近似为对期望的无偏估计。 Adam算法的提出者建议 β 1 \beta_1 β1 的默认值为0.9, β 2 \beta_2 β2的默认值为.999,$\epsilon $默认为 1 0 − 8 10^{-8} 10−8。 另外,在数据比较稀疏的时候,adaptive的方法能得到更好的效果,例如Adagrad,RMSprop, Adam 等。Adam 方法也会比 RMSprop方法收敛的结果要好一些, 所以在实际应用中 ,Adam为最常用的方法,可以比较快地得到一个预估结果。
最后两张动图从直观上展现了算法的优化过程。第一张图为不同算法在损失平面等高线上随时间的变化情况,第二张图为不同算法在鞍点处的行为比较。