深度学习笔记(2):caffe 加新层 Attention LSTM layer

上一篇文章,详细地分析了LSTM layer 的源码和流程图,本篇将在caffe加入新层,Attention lstm layer。

在代码之前,我们先分析一下一些论文里的attention model 的公式和流程图。

(1):  Recurrent Models of Visual Attention 


深度学习笔记(2):caffe 加新层 Attention LSTM layer_第1张图片

A、Glimpse Sensor: 在t时刻,选取不同大小的区域,组合成数据ρ
B、Glimpse Network:图片局部信息与位置信息整合 
C、Model Architecture:ht-1隐藏记忆单元,与gt,生成新的ht,并以此生成attention,即感兴趣的地方。

具体公式推导可以看论文和代码


(2)ACTION RECOGNITION USING VISUAL ATTENTION

深度学习笔记(2):caffe 加新层 Attention LSTM layer_第2张图片

大体思想是对提出的特征分割,即每张图片分割成49个部分(7X7),这样找出每张图片的关注地方,这里的图(b)有问题,作者的代码也反映出这一点。本文主要是在caffe里写出一个这样的Attention Lstm layer.


(3)  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention 


深度学习笔记(2):caffe 加新层 Attention LSTM layer_第3张图片

深度学习笔记(2):caffe 加新层 Attention LSTM layer_第4张图片


思想一致,具体推导看论文。



二:ALSTM Layer 代码

Alstm.cpp

#include 
#include 

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/filler.hpp"
#include "caffe/layer.hpp"
#include "caffe/sequence_layers.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template 
void ALSTMLayer::RecurrentInputBlobNames(vector* names) const {
  names->resize(2);
  (*names)[0] = "h_0";
  (*names)[1] = "c_0";
}

template 
void ALSTMLayer::RecurrentOutputBlobNames(vector* names) const {
  names->resize(2);
  (*names)[0] = "h_" + this->int_to_str(this->T_);
  (*names)[1] = "c_T";
}

template 
void ALSTMLayer::OutputBlobNames(vector* names) const {
  names->resize(2);
  (*names)[0] = "h";
  (*names)[1] = "mask";
}

template 
void ALSTMLayer::FillUnrolledNet(NetParameter* net_param) const {
  const int num_output = this->layer_param_.recurrent_param().num_output();
  CHECK_GT(num_output, 0) << "num_output must be positive";
  const FillerParameter& weight_filler =
      this->layer_param_.recurrent_param().weight_filler();
  const FillerParameter& bias_filler =
      this->layer_param_.recurrent_param().bias_filler();

  // Add generic LayerParameter's (without bottoms/tops) of layer types we'll
  // use to save redundant code.
  LayerParameter hidden_param;
  hidden_param.set_type("InnerProduct");
  hidden_param.mutable_inner_product_param()->set_num_output(num_output * 4);
  hidden_param.mutable_inner_product_param()->set_bias_term(false);
  hidden_param.mutable_inner_product_param()->set_axis(1);
  hidden_param.mutable_inner_product_param()->
      mutable_weight_filler()->CopyFrom(weight_filler);

  LayerParameter biased_hidden_param(hidden_param);
  biased_hidden_param.mutable_inner_product_param()->set_bias_term(true);
  biased_hidden_param.mutable_inner_product_param()->
      mutable_bias_filler()->CopyFrom(bias_filler);

  LayerParameter attention_param;
  attention_param.set_type("InnerProduct");
  attention_param.mutable_inner_product_param()->set_num_output(256);
  attention_param.mutable_inner_product_param()->set_bias_term(false);
  attention_param.mutable_inner_product_param()->set_axis(2);
  attention_param.mutable_inner_product_param()->
      mutable_weight_filler()->CopyFrom(weight_filler);

  LayerParameter biased_attention_param(attention_param);
  biased_attention_param.mutable_inner_product_param()->set_bias_term(true);
  biased_attention_param.mutable_inner_product_param()->
      mutable_bias_filler()->CopyFrom(bias_filler); // weight + bias

  LayerParameter sum_param;
  sum_param.set_type("Eltwise");
  sum_param.mutable_eltwise_param()->set_operation(
      EltwiseParameter_EltwiseOp_SUM);

  LayerParameter slice_param;
  slice_param.set_type("Slice");
  slice_param.mutable_slice_param()->set_axis(0);

  LayerParameter softmax_param;
  softmax_param.set_type("Softmax");
  softmax_param.mutable_softmax_param()->set_axis(-1);

  LayerParameter split_param;
  split_param.set_type("Split");

  LayerParameter scale_param;
  scale_param.set_type("Scale");

  LayerParameter permute_param;
  permute_param.set_type("Permute");

  LayerParameter reshape_param;
  reshape_param.set_type("Reshape");

  LayerParameter bias_layer_param;
  bias_layer_param.set_type("Bias");

  LayerParameter pool_param;
  pool_param.set_type("Pooling");

  LayerParameter reshape_layer_param;
  reshape_layer_param.set_type("Reshape");

  BlobShape input_shape;
  input_shape.add_dim(1);  // c_0 and h_0 are a single timestep
  input_shape.add_dim(this->N_);
  input_shape.add_dim(num_output);

  net_param->add_input("c_0");
  net_param->add_input_shape()->CopyFrom(input_shape);

  net_param->add_input("h_0");
  net_param->add_input_shape()->CopyFrom(input_shape);

  LayerParameter* cont_slice_param = net_param->add_layer();
  cont_slice_param->CopyFrom(slice_param);
  cont_slice_param->set_name("cont_slice");
  cont_slice_param->add_bottom("cont");
  cont_slice_param->mutable_slice_param()->set_axis(1);

  LayerParameter* x_slice_param = net_param->add_layer();
  x_slice_param->CopyFrom(slice_param);
  x_slice_param->set_name("x_slice");
  x_slice_param->add_bottom("x");

  // Add layer to transform all timesteps of x to the hidden state dimension.
  //     W_xc_x = W_xc * x + b_c
/*
  {
    LayerParameter* x_transform_param = net_param->add_layer();
    x_transform_param->CopyFrom(biased_hidden_param);
    x_transform_param->set_name("x_transform");
    x_transform_param->add_param()->set_name("W_xc");
    x_transform_param->add_param()->set_name("b_c");
    x_transform_param->add_bottom("x");
    x_transform_param->add_top("W_xc_x");
  }

  if (this->static_input_) {
    // Add layer to transform x_static to the gate dimension.
    //     W_xc_x_static = W_xc_static * x_static
    LayerParameter* x_static_transform_param = net_param->add_layer();
    x_static_transform_param->CopyFrom(hidden_param);
    x_static_transform_param->mutable_inner_product_param()->set_axis(1);
    x_static_transform_param->set_name("W_xc_x_static");
    x_static_transform_param->add_param()->set_name("W_xc_static");
    x_static_transform_param->add_bottom("x_static");
    x_static_transform_param->add_top("W_xc_x_static");

    LayerParameter* reshape_param = net_param->add_layer();
    reshape_param->set_type("Reshape");
    BlobShape* new_shape =
         reshape_param->mutable_reshape_param()->mutable_shape();
    new_shape->add_dim(1);  // One timestep.
    new_shape->add_dim(this->N_);
    new_shape->add_dim(
        x_static_transform_param->inner_product_param().num_output());
    reshape_param->add_bottom("W_xc_x_static");
    reshape_param->add_top("W_xc_x_static");
  }


  LayerParameter* x_slice_param = net_param->add_layer();
  x_slice_param->CopyFrom(slice_param);
  x_slice_param->add_bottom("W_xc_x");
  x_slice_param->set_name("W_xc_x_slice");
*/

  LayerParameter output_concat_layer;
  output_concat_layer.set_name("h_concat");
  output_concat_layer.set_type("Concat");
  output_concat_layer.add_top("h");
  output_concat_layer.mutable_concat_param()->set_axis(0);

  LayerParameter output_m_layer;
  output_m_layer.set_name("m_concat");
  output_m_layer.set_type("Concat");
  output_m_layer.add_top("mask");
  output_m_layer.mutable_concat_param()->set_axis(0); // out put 2

  for (int t = 1; t <= this->T_; ++t) {
    string tm1s = this->int_to_str(t - 1);
    string ts = this->int_to_str(t);

    cont_slice_param->add_top("cont_" + ts);
    x_slice_param->add_top("x_" + ts);

    // Add a layer to permute x
    {
      LayerParameter* permute_x_param = net_param->add_layer();
      permute_x_param->CopyFrom(permute_param);
      permute_x_param->set_name("permute_x_" + ts);
      permute_x_param->mutable_permute_param()->add_order(2);
      permute_x_param->mutable_permute_param()->add_order(0);
      permute_x_param->mutable_permute_param()->add_order(1);
      permute_x_param->mutable_permute_param()->add_order(3);
      permute_x_param->add_bottom("x_" + ts);
      permute_x_param->add_top("x_p_" + ts);
    }
    //
     

    // Add a layer to generate attention weights
    {
      LayerParameter* att_m_param = net_param->add_layer();
      att_m_param->CopyFrom(biased_attention_param);
      att_m_param->set_name("att_m_" + tm1s);
      att_m_param->add_bottom("h_" + tm1s);
      att_m_param->add_top("m_" + tm1s);     //     }
   {
      LayerParameter* permute_x_a_param = net_param->add_layer();
      permute_x_a_param->CopyFrom(permute_param);
      permute_x_a_param->set_name("permute_x_a_" + ts);
      permute_x_a_param->mutable_permute_param()->add_order(0);
      permute_x_a_param->mutable_permute_param()->add_order(1);
      permute_x_a_param->mutable_permute_param()->add_order(3);
      permute_x_a_param->mutable_permute_param()->add_order(2);
      permute_x_a_param->add_bottom("x_" + ts);
      permute_x_a_param->add_top("x_p_a_" + ts);
    }  // here is to change!
    {
      LayerParameter* att_x_param = net_param->add_layer();
      att_x_param->CopyFrom(biased_attention_param);
      att_x_param->set_name("att_x_" + tm1s);
      att_x_param->mutable_inner_product_param()->set_axis(3);
      att_x_param->add_bottom("x_p_a_" + ts);
      att_x_param->add_top("m_x_" + tm1s);
    }    //  fc layer ,change output,dim 
   {
      LayerParameter* permute_x_a_p_param = net_param->add_layer();
      permute_x_a_p_param->CopyFrom(permute_param);
      permute_x_a_p_param->set_name("permute_x_a_p_" + ts);
      permute_x_a_p_param->mutable_permute_param()->add_order(2);
      permute_x_a_p_param->mutable_permute_param()->add_order(0);
      permute_x_a_p_param->mutable_permute_param()->add_order(1);
      permute_x_a_p_param->mutable_permute_param()->add_order(3);
      permute_x_a_p_param->add_bottom("m_x_" + tm1s);
      permute_x_a_p_param->add_top("m_x_a_" + tm1s);
    }
    {
      LayerParameter* m_sum_layer = net_param->add_layer();
      m_sum_layer->CopyFrom(bias_layer_param);
      m_sum_layer->set_name("mask_input_" + ts);
      m_sum_layer->add_bottom("m_x_a_" + tm1s);
      m_sum_layer->add_bottom("m_" + tm1s);
      m_sum_layer->add_top("m_input_" + tm1s);
    }
   {
      LayerParameter* att_x_ap_param = net_param->add_layer();
      att_x_ap_param->CopyFrom(biased_attention_param);
      att_x_ap_param->set_name("att_x_ap_" + tm1s);
      att_x_ap_param->mutable_inner_product_param()->set_axis(3);
      att_x_ap_param->mutable_inner_product_param()->set_num_output(1);
      att_x_ap_param->add_bottom("m_input_" + tm1s);
      att_x_ap_param->add_top("m_x_ap_" + tm1s);  //256---->1
    }
    {
      LayerParameter* permute_m_param = net_param->add_layer();
      permute_m_param->CopyFrom(permute_param);
      permute_m_param->set_name("permute_m_" + ts);
      permute_m_param->mutable_permute_param()->add_order(1);
      permute_m_param->mutable_permute_param()->add_order(2);
      permute_m_param->mutable_permute_param()->add_order(0);
      permute_m_param->mutable_permute_param()->add_order(3);
      permute_m_param->add_bottom("m_x_ap_" + tm1s);
      permute_m_param->add_top("m_f_" + tm1s);  //10*8*30*1
    }
    // Add a softmax layers to generate attention masks
    {
      LayerParameter* softmax_m_param = net_param->add_layer();
      softmax_m_param->CopyFrom(softmax_param);
      softmax_m_param->mutable_softmax_param()->set_axis(2);
      softmax_m_param->set_name("softmax_m_" + tm1s);
      softmax_m_param->add_bottom("m_f_" + tm1s);
      softmax_m_param->add_top("mask_" + tm1s);
    }
   
     {
      LayerParameter* reshape_m_param = net_param->add_layer();
      reshape_m_param->CopyFrom(reshape_layer_param);
      BlobShape* shape = reshape_m_param->mutable_reshape_param()->mutable_shape();
      shape->Clear();
      shape->add_dim(0);
      shape->add_dim(0);
      shape->add_dim(0);
      reshape_m_param->set_name("reshape_m_" + tm1s);
      reshape_m_param->add_bottom("mask_" + tm1s);
      reshape_m_param->add_top("mask_reshape_" + tm1s);
    }
    //Reshape mask from 1*6*36 to 1*6*6*6
    /*
    {
      LayerParameter* reshape_param = net_param->add_layer();
      reshape_param->set_type("Reshape");
      BlobShape* new_shape =
         reshape_param->mutable_reshape_param()->mutable_shape();
      new_shape->add_dim(1);  // One timestep.
      new_shape->add_dim(6);
      new_shape->add_dim(6);
      new_shape->add_dim(6);
      reshape_param->add_bottom("mask_" +tm1s);
      reshape_param->add_top("mask_reshape_" +tm1s);
    }*/
    // Conbine mask with input features
    {
      LayerParameter* scale_x_param = net_param->add_layer();
      scale_x_param->CopyFrom(scale_param);
      scale_x_param->set_name("scale_x_" + tm1s);
      scale_x_param->add_bottom("x_p_" + ts);
      scale_x_param->add_bottom("mask_reshape_" + tm1s);
      scale_x_param->add_top("x_mask_" + ts);
    }

    {
      LayerParameter* permute_x_mask_param = net_param->add_layer();
      permute_x_mask_param->CopyFrom(permute_param);
      permute_x_mask_param->set_name("permute_x_mask_" + ts);
      permute_x_mask_param->mutable_permute_param()->add_order(1);
      permute_x_mask_param->mutable_permute_param()->add_order(2);
      permute_x_mask_param->mutable_permute_param()->add_order(0);
      permute_x_mask_param->mutable_permute_param()->add_order(3);
      permute_x_mask_param->add_bottom("x_mask_" + ts);
      permute_x_mask_param->add_top("x_mask_p_" + ts);
    }

    {
      LayerParameter* reshape_x_param = net_param->add_layer();
      reshape_x_param->CopyFrom(reshape_param);
      reshape_x_param->set_name("reshape_x_" +ts);
      BlobShape* new_shape =
         reshape_x_param->mutable_reshape_param()->mutable_shape();
      new_shape->add_dim(this->N_);
      new_shape->add_dim(512);//512//384
      new_shape->add_dim(7);//7//6
      new_shape->add_dim(7);//7//6
      reshape_x_param->add_bottom("x_mask_p_" + ts);
      reshape_x_param->add_top("x_mask_reshape_"+ts);
    }

    {
      LayerParameter* pool_x_param = net_param->add_layer();
      pool_x_param->CopyFrom(pool_param);
      pool_x_param->set_name("pool_x_"+ts);
      pool_x_param->mutable_pooling_param()->set_pool(PoolingParameter_PoolMethod_SUM);
      pool_x_param->mutable_pooling_param()->set_kernel_size(7);//7//6
      pool_x_param->add_bottom("x_mask_reshape_"+ts);
      pool_x_param->add_top("x_pool_"+ts);
    }

    {
      LayerParameter* x_transform_param = net_param->add_layer();
      x_transform_param->CopyFrom(biased_hidden_param);
      x_transform_param->set_name("x_transform_" + ts);
      x_transform_param->add_param()->set_name("W_xc_" + ts);
      x_transform_param->add_param()->set_name("b_c" + ts);
      x_transform_param->add_bottom("x_pool_" +ts );
      x_transform_param->add_top("W_xc_x_"+ts);
    }

    {
      LayerParameter* x_transform_reshape_param = net_param->add_layer();
      x_transform_reshape_param->CopyFrom(reshape_param);
      x_transform_reshape_param->set_name("x_transform_reshape_" +ts);
      BlobShape* new_shape_r =
         x_transform_reshape_param->mutable_reshape_param()->mutable_shape();
      new_shape_r->add_dim(1);
      new_shape_r->add_dim(this->N_);
      new_shape_r->add_dim(num_output * 4);
      x_transform_reshape_param->add_bottom("W_xc_x_" + ts);
      x_transform_reshape_param->add_top("W_xc_x_r_"+ts);
    }
    // Add layers to flush the hidden state when beginning a new
    // sequence, as indicated by cont_t.
    //     h_conted_{t-1} := cont_t * h_{t-1}
    //
    // Normally, cont_t is binary (i.e., 0 or 1), so:
    //     h_conted_{t-1} := h_{t-1} if cont_t == 1
    //                       0   otherwise
    {
      LayerParameter* cont_h_param = net_param->add_layer();
      cont_h_param->CopyFrom(sum_param);
      cont_h_param->mutable_eltwise_param()->set_coeff_blob(true);
      cont_h_param->set_name("h_conted_" + tm1s);
      cont_h_param->add_bottom("h_" + tm1s);
      cont_h_param->add_bottom("cont_" + ts);
      cont_h_param->add_top("h_conted_" + tm1s);
    }

    // Add layer to compute
    //     W_hc_h_{t-1} := W_hc * h_conted_{t-1}
    {
      LayerParameter* w_param = net_param->add_layer();
      w_param->CopyFrom(hidden_param);
      w_param->set_name("transform_" + ts);
      w_param->add_param()->set_name("W_hc");
      w_param->add_bottom("h_conted_" + tm1s);
      w_param->add_top("W_hc_h_" + tm1s);
      w_param->mutable_inner_product_param()->set_axis(2);
    }

    // Add the outputs of the linear transformations to compute the gate input.
    //     gate_input_t := W_hc * h_conted_{t-1} + W_xc * x_t + b_c
    //                   = W_hc_h_{t-1} + W_xc_x_t + b_c
    {
      LayerParameter* input_sum_layer = net_param->add_layer();
      input_sum_layer->CopyFrom(sum_param);
      input_sum_layer->set_name("gate_input_" + ts);
      input_sum_layer->add_bottom("W_hc_h_" + tm1s);
      input_sum_layer->add_bottom("W_xc_x_r_" + ts);
      if (this->static_input_) {
        input_sum_layer->add_bottom("W_xc_x_static");
      }
      input_sum_layer->add_top("gate_input_" + ts);
    }

    // Add LSTMUnit layer to compute the cell & hidden vectors c_t and h_t.
    // Inputs: c_{t-1}, gate_input_t = (i_t, f_t, o_t, g_t), cont_t
    // Outputs: c_t, h_t
    //     [ i_t' ]
    //     [ f_t' ] := gate_input_t
    //     [ o_t' ]
    //     [ g_t' ]
    //         i_t := \sigmoid[i_t']
    //         f_t := \sigmoid[f_t']
    //         o_t := \sigmoid[o_t']
    //         g_t := \tanh[g_t']
    //         c_t := cont_t * (f_t .* c_{t-1}) + (i_t .* g_t)
    //         h_t := o_t .* \tanh[c_t]
    {
      LayerParameter* lstm_unit_param = net_param->add_layer();
      lstm_unit_param->set_type("LSTMUnit");
      lstm_unit_param->add_bottom("c_" + tm1s);
      lstm_unit_param->add_bottom("gate_input_" + ts);
      lstm_unit_param->add_bottom("cont_" + ts);
      lstm_unit_param->add_top("c_" + ts);
      lstm_unit_param->add_top("h_" + ts);
      lstm_unit_param->set_name("unit_" + ts);
    }
    output_concat_layer.add_bottom("h_" + ts);
    output_m_layer.add_bottom("mask_" + tm1s);
  }  // for (int t = 1; t <= this->T_; ++t)

  {
    LayerParameter* c_T_copy_param = net_param->add_layer();
    c_T_copy_param->CopyFrom(split_param);
    c_T_copy_param->add_bottom("c_" + this->int_to_str(this->T_));
    c_T_copy_param->add_top("c_T");
  }
  net_param->add_layer()->CopyFrom(output_concat_layer);
  net_param->add_layer()->CopyFrom(output_m_layer);
}

INSTANTIATE_CLASS(ALSTMLayer);
REGISTER_LAYER_CLASS(ALSTM);

}  // namespace caffe


sequence_layers.hpp

#ifndef CAFFE_SEQUENCE_LAYERS_HPP_
#define CAFFE_SEQUENCE_LAYERS_HPP_

#include 
#include 
#include 

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layer.hpp"
#include "caffe/net.hpp"
#include "caffe/proto/caffe.pb.h"

namespace caffe {

template  class RecurrentLayer;

/**
 * @brief An abstract class for implementing recurrent behavior inside of an
 *        unrolled network.  This Layer type cannot be instantiated -- instaed,
 *        you should use one of its implementations which defines the recurrent
 *        architecture, such as RNNLayer or LSTMLayer.
 */
template 
class RecurrentLayer : public Layer {
 public:
  explicit RecurrentLayer(const LayerParameter& param)
      : Layer(param) {}
  virtual void LayerSetUp(const vector*>& bottom,
      const vector*>& top);
  virtual void Reshape(const vector*>& bottom,
      const vector*>& top);
  virtual void Reset();

  virtual inline const char* type() const { return "Recurrent"; }
  virtual inline int MinBottomBlobs() const { return 2; }
  virtual inline int MaxBottomBlobs() const { return 3; }
  //virtual inline int ExactNumTopBlobs() const { return 2; }
  virtual inline int MinTopBlobs() const {return 1; }
  virtual inline int MaxTopBlobs() const {return 2; }


  virtual inline bool AllowForceBackward(const int bottom_index) const {
    // Can't propagate to sequence continuation indicators.
    return bottom_index != 1;
  }

 protected:
  /**
   * @brief Fills net_param with the recurrent network arcthiecture.  Subclasses
   *        should define this -- see RNNLayer and LSTMLayer for examples.
   */
  virtual void FillUnrolledNet(NetParameter* net_param) const = 0;

  /**
   * @brief Fills names with the names of the 0th timestep recurrent input
   *        Blob&s.  Subclasses should define this -- see RNNLayer and LSTMLayer
   *        for examples.
   */
  virtual void RecurrentInputBlobNames(vector* names) const = 0;

  /**
   * @brief Fills names with the names of the Tth timestep recurrent output
   *        Blob&s.  Subclasses should define this -- see RNNLayer and LSTMLayer
   *        for examples.
   */
  virtual void RecurrentOutputBlobNames(vector* names) const = 0;

  /**
   * @brief Fills names with the names of the output blobs, concatenated across
   *        all timesteps.  Should return a name for each top Blob.
   *        Subclasses should define this -- see RNNLayer and LSTMLayer for
   *        examples.
   */
  virtual void OutputBlobNames(vector* names) const = 0;

  /**
   * @param bottom input Blob vector (length 2-3)
   *
   *   -# @f$ (T \times N \times ...) @f$
   *      the time-varying input @f$ x @f$.  After the first two axes, whose
   *      dimensions must correspond to the number of timesteps @f$ T @f$ and
   *      the number of independent streams @f$ N @f$, respectively, its
   *      dimensions may be arbitrary.  Note that the ordering of dimensions --
   *      @f$ (T \times N \times ...) @f$, rather than
   *      @f$ (N \times T \times ...) @f$ -- means that the @f$ N @f$
   *      independent input streams must be "interleaved".
   *
   *   -# @f$ (T \times N) @f$
   *      the sequence continuation indicators @f$ \delta @f$.
   *      These inputs should be binary (0 or 1) indicators, where
   *      @f$ \delta_{t,n} = 0 @f$ means that timestep @f$ t @f$ of stream
   *      @f$ n @f$ is the beginning of a new sequence, and hence the previous
   *      hidden state @f$ h_{t-1} @f$ is multiplied by @f$ \delta_t = 0 @f$
   *      and has no effect on the cell's output at timestep @f$ t @f$, and
   *      a value of @f$ \delta_{t,n} = 1 @f$ means that timestep @f$ t @f$ of
   *      stream @f$ n @f$ is a continuation from the previous timestep
   *      @f$ t-1 @f$, and the previous hidden state @f$ h_{t-1} @f$ affects the
   *      updated hidden state and output.
   *
   *   -# @f$ (N \times ...) @f$ (optional)
   *      the static (non-time-varying) input @f$ x_{static} @f$.
   *      After the first axis, whose dimension must be the number of
   *      independent streams, its dimensions may be arbitrary.
   *      This is mathematically equivalent to using a time-varying input of
   *      @f$ x'_t = [x_t; x_{static}] @f$ -- i.e., tiling the static input
   *      across the @f$ T @f$ timesteps and concatenating with the time-varying
   *      input.  Note that if this input is used, all timesteps in a single
   *      batch within a particular one of the @f$ N @f$ streams must share the
   *      same static input, even if the sequence continuation indicators
   *      suggest that difference sequences are ending and beginning within a
   *      single batch.  This may require padding and/or truncation for uniform
   *      length.
   *
   * @param top output Blob vector (length 1)
   *   -# @f$ (T \times N \times D) @f$
   *      the time-varying output @f$ y @f$, where @f$ D @f$ is
   *      recurrent_param.num_output().
   *      Refer to documentation for particular RecurrentLayer implementations
   *      (such as RNNLayer and LSTMLayer) for the definition of @f$ y @f$.
   */
  virtual void Forward_cpu(const vector*>& bottom,
      const vector*>& top);
  virtual void Forward_gpu(const vector*>& bottom,
      const vector*>& top);
  virtual void Backward_cpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom);

  /// @brief A helper function, useful for stringifying timestep indices.
  virtual string int_to_str(const int t) const;

  /// @brief A Net to implement the Recurrent functionality.
  shared_ptr > unrolled_net_;

  /// @brief The number of independent streams to process simultaneously.
  int N_;

  /**
   * @brief The number of timesteps in the layer's input, and the number of
   *        timesteps over which to backpropagate through time.
   */
  int T_;

  /// @brief Whether the layer has a "static" input copied across all timesteps.
  bool static_input_;

  vector* > recur_input_blobs_;
  vector* > recur_output_blobs_;
  vector* > output_blobs_;
  Blob* x_input_blob_;
  Blob* x_static_input_blob_;
  Blob* cont_input_blob_;
};

/**
 * @brief Processes sequential inputs using a "Long Short-Term Memory" (LSTM)
 *        [1] style recurrent neural network (RNN). Implemented as a network
 *        unrolled the LSTM computation in time.
 *
 *
 * The specific architecture used in this implementation is as described in
 * "Learning to Execute" [2], reproduced below:
 *     i_t := \sigmoid[ W_{hi} * h_{t-1} + W_{xi} * x_t + b_i ]
 *     f_t := \sigmoid[ W_{hf} * h_{t-1} + W_{xf} * x_t + b_f ]
 *     o_t := \sigmoid[ W_{ho} * h_{t-1} + W_{xo} * x_t + b_o ]
 *     g_t :=    \tanh[ W_{hg} * h_{t-1} + W_{xg} * x_t + b_g ]
 *     c_t := (f_t .* c_{t-1}) + (i_t .* g_t)
 *     h_t := o_t .* \tanh[c_t]
 * In the implementation, the i, f, o, and g computations are performed as a
 * single inner product.
 *
 * Notably, this implementation lacks the "diagonal" gates, as used in the
 * LSTM architectures described by Alex Graves [3] and others.
 *
 * [1] Hochreiter, Sepp, and Schmidhuber, J黵gen. "Long short-term memory."
 *     Neural Computation 9, no. 8 (1997): 1735-1780.
 *
 * [2] Zaremba, Wojciech, and Sutskever, Ilya. "Learning to execute."
 *     arXiv preprint arXiv:1410.4615 (2014).
 *
 * [3] Graves, Alex. "Generating sequences with recurrent neural networks."
 *     arXiv preprint arXiv:1308.0850 (2013).
 */
template 
class LSTMLayer : public RecurrentLayer {
 public:
  explicit LSTMLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "LSTM"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};

template 
class LSTMStaticLayer : public RecurrentLayer {
 public:
  explicit LSTMStaticLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "LSTMStatic"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};

template 
class LSTMStaticNewLayer : public RecurrentLayer {
 public:
  explicit LSTMStaticNewLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "LSTMStaticNew"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};

template 
class ASLSTMLayer : public RecurrentLayer {
 public:
  explicit ASLSTMLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "ASLSTM"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};

template 
class ADLSTMLayer : public RecurrentLayer {
 public:
  explicit ADLSTMLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "ADLSTM"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};

template 
class ALSTMLayer : public RecurrentLayer {
 public:
  explicit ALSTMLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "ALSTM"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};

//coupled LSTM layer
template 
class CLSTMLayer : public RecurrentLayer {
 public:
  explicit CLSTMLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "CLSTM"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};

//coupled LSTM layer
template 
class ACLSTMLayer : public RecurrentLayer {
 public:
  explicit ACLSTMLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "ACLSTM"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};

template 
class ACTLSTMLayer : public RecurrentLayer {
 public:
  explicit ACTLSTMLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "ACTLSTM"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};

template 
class ACSLSTMLayer : public RecurrentLayer {
 public:
  explicit ACSLSTMLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "ACSLSTM"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};

template 
class ACSSLSTMLayer : public RecurrentLayer {
 public:
  explicit ACSSLSTMLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "ACSSLSTM"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};
template 
class ACSSLSTMStaticLayer : public RecurrentLayer {
 public:
  explicit ACSSLSTMStaticLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "ACSSLSTMStatic"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};
template 
class ATLSTMLayer : public RecurrentLayer {
 public:
  explicit ATLSTMLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "ATLSTM"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};

/**
 * @brief A helper for LSTMLayer: computes a single timestep of the
 *        non-linearity of the LSTM, producing the updated cell and hidden
 *        states.
 */
template 
class LSTMUnitLayer : public Layer {
 public:
  explicit LSTMUnitLayer(const LayerParameter& param)
      : Layer(param) {}
  virtual void Reshape(const vector*>& bottom,
      const vector*>& top);

  virtual inline const char* type() const { return "LSTMUnit"; }
  virtual inline int ExactNumBottomBlobs() const { return 3; }
  virtual inline int ExactNumTopBlobs() const { return 2; }

  virtual inline bool AllowForceBackward(const int bottom_index) const {
    // Can't propagate to sequence continuation indicators.
    return bottom_index != 2;
  }

 protected:
  /**
   * @param bottom input Blob vector (length 3)
   *   -# @f$ (1 \times N \times D) @f$
   *      the previous timestep cell state @f$ c_{t-1} @f$
   *   -# @f$ (1 \times N \times 4D) @f$
   *      the "gate inputs" @f$ [i_t', f_t', o_t', g_t'] @f$
   *   -# @f$ (1 \times 1 \times N) @f$
   *      the sequence continuation indicators  @f$ \delta_t @f$
   * @param top output Blob vector (length 2)
   *   -# @f$ (1 \times N \times D) @f$
   *      the updated cell state @f$ c_t @f$, computed as:
   *          i_t := \sigmoid[i_t']
   *          f_t := \sigmoid[f_t']
   *          o_t := \sigmoid[o_t']
   *          g_t := \tanh[g_t']
   *          c_t := cont_t * (f_t .* c_{t-1}) + (i_t .* g_t)
   *   -# @f$ (1 \times N \times D) @f$
   *      the updated hidden state @f$ h_t @f$, computed as:
   *          h_t := o_t .* \tanh[c_t]
   */
  virtual void Forward_cpu(const vector*>& bottom,
      const vector*>& top);
  virtual void Forward_gpu(const vector*>& bottom,
      const vector*>& top);

  /**
   * @brief Computes the error gradient w.r.t. the LSTMUnit inputs.
   *
   * @param top output Blob vector (length 2), providing the error gradient with
   *        respect to the outputs
   *   -# @f$ (1 \times N \times D) @f$:
   *      containing error gradients @f$ \frac{\partial E}{\partial c_t} @f$
   *      with respect to the updated cell state @f$ c_t @f$
   *   -# @f$ (1 \times N \times D) @f$:
   *      containing error gradients @f$ \frac{\partial E}{\partial h_t} @f$
   *      with respect to the updated cell state @f$ h_t @f$
   * @param propagate_down see Layer::Backward.
   * @param bottom input Blob vector (length 3), into which the error gradients
   *        with respect to the LSTMUnit inputs @f$ c_{t-1} @f$ and the gate
   *        inputs are computed.  Computatation of the error gradients w.r.t.
   *        the sequence indicators is not implemented.
   *   -# @f$ (1 \times N \times D) @f$
   *      the error gradient w.r.t. the previous timestep cell state
   *      @f$ c_{t-1} @f$
   *   -# @f$ (1 \times N \times 4D) @f$
   *      the error gradient w.r.t. the "gate inputs"
   *      @f$ [
   *          \frac{\partial E}{\partial i_t}
   *          \frac{\partial E}{\partial f_t}
   *          \frac{\partial E}{\partial o_t}
   *          \frac{\partial E}{\partial g_t}
   *          ] @f$
   *   -# @f$ (1 \times 1 \times N) @f$
   *      the gradient w.r.t. the sequence continuation indicators
   *      @f$ \delta_t @f$ is currently not computed.
   */
  virtual void Backward_cpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom);
  virtual void Backward_gpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom);

  /// @brief The hidden and output dimension.
  int hidden_dim_;
  Blob X_acts_;
};

/**
 * @brief Processes time-varying inputs using a simple recurrent neural network
 *        (RNN). Implemented as a network unrolling the RNN computation in time.
 *
 * Given time-varying inputs @f$ x_t @f$, computes hidden state @f$
 *     h_t := \tanh[ W_{hh} h_{t_1} + W_{xh} x_t + b_h ]
 * @f$, and outputs @f$
 *     o_t := \tanh[ W_{ho} h_t + b_o ]
 * @f$.
 */
template 
class RNNLayer : public RecurrentLayer {
 public:
  explicit RNNLayer(const LayerParameter& param)
      : RecurrentLayer(param) {}

  virtual inline const char* type() const { return "RNN"; }

 protected:
  virtual void FillUnrolledNet(NetParameter* net_param) const;
  virtual void RecurrentInputBlobNames(vector* names) const;
  virtual void RecurrentOutputBlobNames(vector* names) const;
  virtual void OutputBlobNames(vector* names) const;
};

}  // namespace caffe

#endif  // CAFFE_SEQUENCE_LAYERS_HPP_


代码就不注释了,有问题可以留言。代码主要是在LSTM Unit前进行一些数据预处理,计算出Mask(即Attention),这里给出attention的计算方式,方便大家理解代码。


然后把S接入softmax进行[0,1]压缩。关于tanh这个函数可以更换成其他方式。


深度学习笔记(2):caffe 加新层 Attention LSTM layer_第5张图片


补充:博主推了半天的维度,参考LSTM layer,测试成功。但是博主参考一篇AAAI论文对一些joint坐标进行attention,改动代码测试失败,发邮件给作者无人回复,严重怀疑造假。为什么坐标就不行呢?因为上述代码是写图片的区域的,而坐标就3个点,维度太低。


你可能感兴趣的:(lstm)