主要是廖雪峰教程笔记
python常用内建模块:
1.datetime
datetime是Python处理日期和时间的时间库。
获取当前日期和时间:
from datetime import datetime
now = datetime.now() # 获取当前datetime
type(now)
<class 'datetime.datetime'>
datetime.now()返回当前日期和时间,其类型是datetime。
获取指定日期和时间:
from datetime import datetime
dt = datetime(2015,4,19,20,20) # 用于指定日期时间创建datetime
print(dt)
2015-04-19 12:20:00
datetime转换为timestamp:
在计算机中,时间实际上是用数字表示的。我们把1970年1月1日 00:00:00 UTC+00:00时区的时刻称为epoch time,记为0(1970年以前的时间timestamp为负数),当前时间就是相对于epoch time的秒数,称为timestamp。(这个timestamp和datetime得出的时间是等价的,只是datetime得出的时间是以一种大家都很任意理解的形式表示,timestamp是把他转换为相对于epoch time的秒数。)
timestamp = 0 = 1970-1-1 00:00:00 UTC+0:00
对应的北京时间是:
timestamp = 0 = 1970-1-1 08:00:00 UTC+8:00
可见timestamp的值与时区毫无关系,因为timestamp一旦确定,其UTC时间就确定了,转换到任意时区的时间也是完全确定的,这就是为什么计算机存储的当前时间是以timestamp表示的,因为全球各地的计算机在任意时刻的timestamp都是完全相同的(假定时间已校准)。
把一个datetime类型转换为timestamp只需要简单调用timestamp方法:
from datetime import datetime
dt = datetime(2015,4,19,12,20) # 用指定日期时间创建datetime
dt
2015-4-19 12:20:00
dt.timestamp() # 把datetime转换为timestamp
1429417200.0
注意Python的timestamp是应该浮点数。如果由小数位,小数位表示毫秒数。
timestamp转换为datetime:
要把timestamp转换为datetime,使用datetime提供的fromtimestamp方法:
from datetime import datetime
t = 1429417200.0
print(datetime.fromtimestamp(t))
2015-04-19 12:20:00
注意到timestamp是一个浮点数,它没有时区的概念,而datetime是有时区的。上述转换是在timestamp和本地时间做转换。
本地时间是指当前操作系统设定的时区。例如北京时区是东8区,则本地时间:
2015-04-19 12:20:00
实际上就是UTC+8:00时区的时间:
2015-04-19 12:20:00 UTC+8:00
而此刻的格林威治标准时间与北京时间差了8小时,也就是UTC+0:00时区的时间应该是:
2015-04-19 04:20:00 UTC+0:00
timestamp也可以直接被转换到UTC标准时区的时间:
>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t)) # 本地时间
2015-04-19 12:20:00
>>> print(datetime.utcfromtimestamp(t)) # UTC时间
2015-04-19 04:20:00
str转换为datetime:
很多时候,用户输入的日期和时间是字符串,要处理日期和时间,首先必须把str转换为datetime。转换方法是通过datetime.strptime()实现,需要一个日期和时间的格式化字符串:
>>> from datetime import datetime
>>> cday = datetime.strptime('2015-6-1 18:19:59', '%Y-%m-%d %H:%M:%S')
>>> print(cday)
2015-06-01 18:19:59
字符串’%Y-%m-%d %H:%M:%S’规定了日期和时间部分的格式。
datetime转换为str:
如果已经有了datetime对象,要把它格式化为字符串显示给用户,就需要转换为str,转换方法是通过strftime()实现的,同样需要一个日期和时间的格式化字符串:
>>> from datetime import datetime
>>> now = datetime.now()
>>> print(now.strftime('%a, %b %d %H:%M'))
Mon, May 05 16:28
datetime加减:
对日期和时间进行加减实际上就是把datetime往后或往前计算,得到新的datetime。加减可以直接用+和-运算符,不过需要导入timedelta这个类:
>>> from datetime import datetime, timedelta
>>> now = datetime.now()
>>> now
datetime.datetime(2015, 5, 18, 16, 57, 3, 540997)
>>> now + timedelta(hours=10)
datetime.datetime(2015, 5, 19, 2, 57, 3, 540997)
>>> now - timedelta(days=1)
datetime.datetime(2015, 5, 17, 16, 57, 3, 540997)
>>> now + timedelta(days=2, hours=12)
datetime.datetime(2015, 5, 21, 4, 57, 3, 540997)
可见,使用timedelta你可以很容易地算出前几天和后几天的时刻。
2.collections
namedtuple:
namedtuple是一个函数,它用来创建一个自定义的tuole对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2
这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple元素地个数,并可以用属性而不是索引来引用tuple的某个元素。
类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:
# namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])
depue:
使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])
deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。
defaultdict:
使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:
>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'
注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。
除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。
OrderedDict:
使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict:
>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:
>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> list(od.keys()) # 按照插入的Key的顺序返回
['z', 'y', 'x']
OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的key。
Counter:
Counter是一个简单的计数器,例如,统计字符出现的个数。
3.base64
用记事本打开exe、jpg、pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要让记事本这样的文本处理软件能处理二进制数据,就需要一个二进制到字符串的转换方法,Base64是一种最常见的二进制编码方法。
Base64是一种任意二进制到文本字符串的编码方法,常用于URL、Cookie、网页中传输少量二进制数据。
4.struct
准确地讲,Python没有专门处理字节的数据类型。但由于b’str’可以表示字节,所以,字节数组=二进制str。
好在Python提供了一个struct模块来解决bytes和其他二进制数据类型的转换。
struct的pack函数把任意数据类型变成bytes:
>>> import struct
>>> struct.pack('>I', 10240099)
b'\x00\x9c@c'
pack的第一个参数是处理指令,'>I'
的意思是:
>
表示字节顺序是big-endian,也就是网络序,I
表示4字节无符号整数。
后面的参数个数要和处理指令一致。
unpack把bytes变成相应的数据类型:
>>> struct.unpack('>IH', b'\xf0\xf0\xf0\xf0\x80\x80')
(4042322160, 32896)
根据>IH
的说明,后面的bytes
依次变为I
:4字节无符号整数和H:
2字节无符号整数。
所以,尽管Python不适合编写底层操作字节流的代码,但在对性能要求不高的地方,利用struct就方便多了。
5.hashlib
Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等。摘要算法又称哈希算法、散列算法。它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示)。
摘要算法之所以能指出数据是否被篡改过,就是因为摘要函数是一个单向函数,计算f(data)很容易,但通过digest反推data却非常困难。而且,对原始数据做一个bit的修改,都会导致计算出的摘要完全不同。
我们以常见的摘要算法MD5为例,计算出一个字符串的MD5值:
import hashlib
md5 = hashlib.md5()
md5.update('how to use md5 in python hashlib?'.encode('utf-8'))
print(md5.hexdigest())
计算结果如下:
d26a53750bc40b38b65a520292f69306
MD5是最常见的摘要算法,速度很快,生成结果是固定的128 bit字节,通常用一个32位的16进制字符串表示。
另一种常见的摘要算法是SHA1,调用SHA1和调用MD5完全类似:
import hashlib
sha1 = hashlib.sha1()
sha1.update('how to use sha1 in '.encode('utf-8'))
sha1.update('python hashlib?'.encode('utf-8'))
print(sha1.hexdigest())
SHA1的结果是160 bit字节,通常用一个40位的16进制字符串表示。
比SHA1更安全的算法是SHA256和SHA512,不过越安全的算法不仅越慢,而且摘要长度更长。
6.hmac
通过哈希算法,我们可以验证一段数据是否有效,方法就是对比该数据的哈希值,例如,判断用户口令是否正确,我们用保存在数据库中的password_md5对比计算md5(password)的结果,如果一致,用户输入的口令就是正确的。
为了防止黑客通过彩虹表根据哈希值反推原始口令,在计算哈希的时候,不能仅针对原始输入计算,需要增加一个salt(加盐)来使得相同的输入也能得到不同的哈希,这样,大大增加了黑客破解的难度。
但实际上,把salt看做一个“口令”,加salt的哈希就是:计算一段message的哈希时,根据不通口令计算出不同的哈希。要验证哈希值,必须同时提供正确的口令。
这实际上就是Hmac算法:Keyed-Hashing for Message Authentication。它通过一个标准算法,在计算哈希的过程中,把key混入计算过程中。
和我们自定义的加salt算法不同,Hmac算法针对所有哈希算法都通用,无论是MD5还是SHA-1。采用Hmac替代我们自己的salt算法,可以使程序算法更标准化,也更安全。
Python自带的hmac模块实现了标准的Hmac算法。我们来看看如何使用hmac实现带key的哈希。
我们首先需要准备待计算的原始消息message,随机key,哈希算法,这里采用MD5,使用hmac的代码如下:
>>> import hmac
>>> message = b'Hello, world!'
>>> key = b'secret'
>>> h = hmac.new(key, message, digestmod='MD5')
>>> # 如果消息很长,可以多次调用h.update(msg)
>>> h.hexdigest()
'fa4ee7d173f2d97ee79022d1a7355bcf'
可见使用hmac和普通hash算法非常类似。hmac输出的长度和原始哈希算法的长度一致。需要注意传入的key和message都是bytes类型,str类型需要首先编码为bytes。
7.itertools
Python的内建模块itertools
提供了非常有用的用于操作迭代对象的函数。
首先,我们看看itertools
提供的几个“无限”迭代器:
>>> import itertools
>>> natuals = itertools.count(1)
>>> for n in natuals:
... print(n)
...
1
2
3
...
因为count()会创建一个无限的迭代器,所以上述代码会打印出自然数序列,根本停不下来,只能按Ctrl+C退出。
>>> import itertools
>>> cs = itertools.cycle('ABC') # 注意字符串也是序列的一种
>>> for c in cs:
... print(c)
...
'A'
'B'
'C'
'A'
'B'
'C'
...
cycle()会把传入的一个序列无限重复下去。
>>> ns = itertools.repeat('A', 3)
>>> for n in ns:
... print(n)
...
A
A
A
repeat()负责把一个元素无限重复下去,不过如果提供第二个参数就可以限定重复次数。
无限序列只有在for迭代时才会无限地迭代下去,如果只是创建了一个迭代对象,它不会事先把无限个元素生成出来,事实上也不可能在内存中创建无限多个元素。
无限序列虽然可以无限迭代下去,但是通常我们会通过takewhile()等函数根据条件判断来截取出一个有限的序列:
>>> natuals = itertools.count(1)
>>> ns = itertools.takewhile(lambda x: x <= 10, natuals)
>>> list(ns)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
itertools
提供的几个迭代器操作函数更加有用:
chain()可以把一组迭代对象串联起来,形成一个更大的迭代器:
>>> for c in itertools.chain('ABC', 'XYZ'):
... print(c)
# 迭代效果:'A' 'B' 'C' 'X' 'Y' 'Z'
groupby()把迭代器中相邻的重复元素挑出来放在一起:
>>> for key, group in itertools.groupby('AAABBBCCAAA'):
... print(key, list(group))
...
A ['A', 'A', 'A']
B ['B', 'B', 'B']
C ['C', 'C']
A ['A', 'A', 'A']
小结:
itertools模块提供的全部是处理迭代功能的函数,它们的返回值不是list,而是Iterator,只有用for循环迭代的时候才真正计算。
8.contextlib
9.urllib
urllib提供了一系列用于操作URL的功能。
urllib提供的功能就是利用程序去执行各种HTTP请求。如果要模拟浏览器完成特定功能,需要把请求伪装成浏览器。伪装的方法是先监控浏览器发出的请求,再根据浏览器的请求头来伪装,User-Agent头就是用来标识浏览器的。
10.XML
DOM vs SAX:
操作XML有两种方法:DOM和SAX。DOM会把整个XML读入内存,解析为树,因此占用内存大,解析慢,优点是可以任意遍历树的节点。SAX是流模式,边读边解析,占用内存小,解析快,缺点是我们需要自己处理事件。
正常情况下,优先考虑SAX,因为DOM实在太占内存。
在Python中使用SAX解析XML非常简洁,通常我们关心的事件是start_element,end_element和char_data,准备好这3个函数,然后就可以解析xml了。
11.HTMLParser
利用HTMLParser,可以把网页中的文本、图像等解析出来。