tensorflow seq2seq模型 代码阅读分析

如果刚开始入门该模型请阅读tf官方说明:Sequence-to-Sequence Models

模型应用于机器翻译的示例代码:github

如果还没有看懂tf的translate示例代码,请先理解透彻translate项目代码之后再阅读本文。

开始

开始阅读源码之前,应该对模型有基本的认识,了解模型的基本原理。我认为需要注意的几个关键点是:
1、output projection的作用
2、attention的计算公式
3、embedding的作用和原理

这里强调一下attention的计算公式:
tensorflow seq2seq模型 代码阅读分析_第1张图片
另外,模型中一个cell的计算过程其实用到了两次attention机制,一次作用与cell的输入,一次作用与cell的输出。

embedding_attention_seq2seq函数

def embedding_attention_seq2seq(encoder_inputs,
                                decoder_inputs,
                                cell,
                                num_encoder_symbols,
                                num_decoder_symbols,
                                embedding_size,
                                num_heads=1,
                                init_embedding=None,
                                output_projection=None,
                                feed_previous=False,
                                dtype=None,
                                scope=None,
                                initial_state_attention=False):
  '''对encoder输入进行embedding,运行encoder部分,将encoder输出作为参数传给embedding_attention_decoer'''

  with variable_scope.variable_scope(
      scope or "embedding_attention_seq2seq", dtype=dtype) as scope:
    dtype = scope.dtype
    # 自己添加的代码,增加指定输入embedding的功能
    # embedding initializer
    if init_embedding:
        initializer = tf.constant_initializer(init_embedding,dtype=dtype)
    else:
        initializer = None
    # 将对输入的embedding添加到cell中
    # Encoder.
    encoder_cell = copy.deepcopy(cell)
    encoder_cell = core_rnn_cell.EmbeddingWrapper(
        encoder_cell,
        embedding_classes=num_encoder_symbols,
        embedding_size=embedding_size,
        initializer=initializer)
    # 运行encoder,得到输出和最终状态
    encoder_outputs, encoder_state = core_rnn.static_rnn(
        encoder_cell, encoder_inputs, dtype=dtype)

    # 这里对encoder_outputs 进行reshape,变为[batch_size,input_length,cell_size]大小
    # encoder_outputs将会在attention_decoder中用于attention的计算
    # First calculate a concatenation of encoder outputs to put attention on.
    top_states = [
        array_ops.reshape(e, [-1, 1, cell.output_size]) for e in encoder_outputs
    ]
    attention_states = array_ops.concat(top_states, 1)

    # 在cell中添加outputprojection
    # 这种output projection 与手动定义output projection 的差别仅仅在于网络的输出size
    # 整个网络模型最后的输出结果,大小与output size相同
    # Decoder.
    output_size = None
    if output_projection is None:
      cell = core_rnn_cell.OutputProjectionWrapper(cell, num_decoder_symbols)
      output_size = num_decoder_symbols

    # 调用 embedding_attention_decoder
    if isinstance(feed_previous, bool):
      return embedding_attention_decoder(
          decoder_inputs,
          encoder_state,
          attention_states,
          cell,
          num_decoder_symbols,
          embedding_size,
          num_heads=num_heads,
          output_size=output_size,
          output_projection=output_projection,
          feed_previous=feed_previous,
          initial_state_attention=initial_state_attention)

embedding_attention_decoder函数

def embedding_attention_decoder(decoder_inputs,
                                initial_state,
                                attention_states,
                                cell,
                                num_symbols,
                                embedding_size,
                                num_heads=1,
                                output_size=None,
                                output_projection=None,
                                feed_previous=False,
                                update_embedding_for_previous=True,
                                dtype=None,
                                scope=None,
                                initial_state_attention=False):
  '''
    对decoder_input进行embedding,定义loop_function,调用attention_decoder

    疑难解析:
    1、output_size 与 num_symbols的差别:output_size是rnn的一个cell输出的大小,num_symbols是最终的输出大小,对应着词汇表的大小
  '''

  if output_size is None:
    output_size = cell.output_size
  if output_projection is not None:
    proj_biases = ops.convert_to_tensor(output_projection[1], dtype=dtype)
    proj_biases.get_shape().assert_is_compatible_with([num_symbols])

  with variable_scope.variable_scope(
      scope or "embedding_attention_decoder", dtype=dtype) as scope:

    # 初始化decoder的embedding向量,默认tf使用glorot_uniform_initializer
    embedding = variable_scope.get_variable("embedding",
                                            [num_symbols, embedding_size])
    # loop_function的作用是将上一个cell输出进行output_projection然后embedding得到当前cell的输入,仅在feed_previous情况下使用
    loop_function = _extract_argmax_and_embed(
        embedding, output_projection,
        update_embedding_for_previous) if feed_previous else None
    # 查询embedding,得到decoder_input对应的embedding
    emb_inp = [
        embedding_ops.embedding_lookup(embedding, i) for i in decoder_inputs
    ]
    # 调用attention_decoder
    # embedding的decoder_input、encoder的输出、encoder最终状态 作为输入
    return attention_decoder(
        emb_inp,
        initial_state,
        attention_states,
        cell,
        output_size=output_size,
        num_heads=num_heads,
        loop_function=loop_function,
        initial_state_attention=initial_state_attention)

attention_decoder函数

def attention_decoder(decoder_inputs,
                      initial_state,
                      attention_states,
                      cell,
                      output_size=None,
                      num_heads=1,
                      loop_function=None,
                      dtype=None,
                      scope=None,
                      initial_state_attention=False):
  '''
  :param decoder_inputs: 经过embedding的输入
  :param initial_state: encoder输入的encoder_state;encoder最终状态
  :param attention_states: 就是encoder_output
  :param output_size: cell输出大小,不是词汇表的大小
  :param num_heads: 每个decoder hiden state, 会计算num_heads 个 加权encoder output
  :param initial_state_attention:
  :return:
  '''

  if not decoder_inputs:
    raise ValueError("Must provide at least 1 input to attention decoder.")
  if num_heads < 1:
    raise ValueError("With less than 1 heads, use a non-attention decoder.")
  if attention_states.get_shape()[2].value is None:
    raise ValueError("Shape[2] of attention_states must be known: %s" %
                     attention_states.get_shape())
  if output_size is None:
    output_size = cell.output_size

  with variable_scope.variable_scope(
      scope or "attention_decoder", dtype=dtype) as scope:
    dtype = scope.dtype

    batch_size = array_ops.shape(decoder_inputs[0])[0]  # Needed for reshaping.
    attn_length = attention_states.get_shape()[1].value
    if attn_length is None:
      attn_length = array_ops.shape(attention_states)[1]
    attn_size = attention_states.get_shape()[2].value


    # attention 计算公式:v*tanh(w1*h_t+w2*di)
    # To calculate W1 * h_t we use a 1-by-1 convolution, need to reshape before.
    hidden = array_ops.reshape(attention_states,
                               [-1, attn_length, 1, attn_size])
    hidden_features = []# 保存计算好的w1*h_t
    v = []
    attention_vec_size = attn_size  # Size of query vectors for attention.
    for a in xrange(num_heads):
      k = variable_scope.get_variable("AttnW_%d" % a,
                                      [1, 1, attn_size, attention_vec_size])
      # 使用1x1卷积 计算  w1*h_t
      hidden_features.append(nn_ops.conv2d(hidden, k, [1, 1, 1, 1], "SAME"))
      v.append(
          variable_scope.get_variable("AttnV_%d" % a, [attention_vec_size]))

    state = initial_state

    def attention(query):
      # query 就是 di,decoder 的第i个节点的节点值
      # 该函数输入decoder 节点值,得到加权求和的encoder output
      """Put attention masks on hidden using hidden_features and query."""
      ds = []  # Results of attention reads will be stored here.
      if nest.is_sequence(query):  # If the query is a tuple, flatten it.
        query_list = nest.flatten(query)
        for q in query_list:  # Check that ndims == 2 if specified.
          ndims = q.get_shape().ndims
          if ndims:
            assert ndims == 2
        query = array_ops.concat(query_list, 1)
      for a in xrange(num_heads):
        with variable_scope.variable_scope("Attention_%d" % a):
          # y = w2*di+b
          y = linear(query, attention_vec_size, True)
          y = array_ops.reshape(y, [-1, 1, 1, attention_vec_size])
          # 执行 s = v*tanh(w1*h_t + w2*di)
          # Attention mask is a softmax of v^T * tanh(...).
          s = math_ops.reduce_sum(v[a] * math_ops.tanh(hidden_features[a] + y),
                                  [2, 3])
          # s是每个encoder output的attention值、经过softmax计算得到权重值 a
          a = nn_ops.softmax(s)
          # d = sum( h_t* a_t )
          # Now calculate the attention-weighted vector d.
          d = math_ops.reduce_sum(
              array_ops.reshape(a, [-1, attn_length, 1, 1]) * hidden, [1, 2])
          # 每一个attention_head 会得到一个 d,num_heads>1时会得到一组d
          ds.append(array_ops.reshape(d, [-1, attn_size]))
      return ds

    outputs = []
    prev = None
    batch_attn_size = array_ops.stack([batch_size, attn_size])
    # attns 是由上一个decoder hidden state 计算出来的加权求和的encoder output
    attns = [
        array_ops.zeros(
            batch_attn_size, dtype=dtype) for _ in xrange(num_heads)
    ]
    for a in attns:  # Ensure the second shape of attention vectors is set.
      a.set_shape([None, attn_size])
    # 使用encoder state 初始化第一个decoder 节点的attention
    if initial_state_attention:
      attns = attention(initial_state)
    for i, inp in enumerate(decoder_inputs):
      if i > 0:
        variable_scope.get_variable_scope().reuse_variables()
      # 如果设置了loop function,使用loop function 获得当前cell的 input
      # If loop_function is set, we use it instead of decoder_inputs.
      if loop_function is not None and prev is not None:
        with variable_scope.variable_scope("loop_function", reuse=True):
          inp = loop_function(prev, i)
      # Merge input and previous attentions into one vector of the right size.
      input_size = inp.get_shape().with_rank(2)[1]
      if input_size.value is None:
        raise ValueError("Could not infer input size from input: %s" % inp.name)
      # 当前cell输入是 decoder input 和对应的 attention 的线性组合
      # x' = w*concate(x,attens)
      x = linear([inp] + attns, input_size, True)
      # Run the RNN.
      cell_output, state = cell(x, state)
      # 用当前state 计算attention
      # Run the attention mechanism.
      if i == 0 and initial_state_attention:
        with variable_scope.variable_scope(
            variable_scope.get_variable_scope(), reuse=True):
          attns = attention(state)
      else:
        attns = attention(state)

      # cell 真正输出是cell输出和当前attention的线性组合
      with variable_scope.variable_scope("AttnOutputProjection"):
        output = linear([cell_output] + attns, output_size, True)
      if loop_function is not None:
        prev = output
      outputs.append(output)

  return outputs, state

参考文献:

[1]Tensorflow源码解读(一):Attention Seq2Seq模型

感谢上文作者在阅读代码最艰难的困境之中点播了我,愿我也能帮助到现在的你。

你可能感兴趣的:(机器学习,深度学习)