opencvRGB-BGR通道转换及通道法灰度转换

图像读入:

opencvRGB-BGR通道转换及通道法灰度转换_第1张图片

#include 
#include 
using namespace cv;
int main(int argc, char** argv) {
 Mat src = imread("D:/图片资源/1.png");
 if(src.empty()){
  printf("could not load image...\n");
  return -1;
 }
 namedWindow("test opencv setup", CV_WINDOW_AUTOSIZE);
 imshow("test opencv setup", src);
 waitKey(0);
 return 0;
}

直接加载原图灰度图像可以直接加参数:

Mat src = imread("D:/图片资源/1.png",IMREAD_GRAYSCALE);

保存图片:

imwrite("D:/图片资源/2.png",output_image);

图像转换与保存:

#include 
#include 
#include
using namespace cv;
int main(int argc, char** argv) {
 Mat src = imread("D:/图片资源/1.png",IMREAD_GRAYSCALE);
 if(src.empty()){
  printf("could not load image...\n");
  return -1;
 }
 namedWindow("test opencv setup", CV_WINDOW_AUTOSIZE);
 imshow("test opencv setup", src);
 namedWindow("output windows",CV_WINDOW_AUTOSIZE);
 Mat output_image;
 cvtColor(src, output_image, CV_BGR2HSV);//转换
 imshow("output windows",output_image);//显示转换后图像
 imwrite("D:/图片资源/2.png",output_image);
 waitKey(0);
 return 0;
}

掩膜操作:

#include 
#include 
#include
using namespace cv;
int main(int argc, char** argv) {
 Mat src, dst;
 src = imread("D:/图片资源/1.png");
 if (!src.data) {
  printf("could not load image...\n");
  return -1;
 }
 namedWindow("input image", CV_WINDOW_AUTOSIZE);
 imshow("input image",src);
 //获取图像宽度和高度,RGB图像有三个通道值
  int cols = (src.cols-1) * src.channels();//宽度=图像列*通道数
  int offsetx = src.channels();//图像通道
  int rows = src.rows; //高度=图像高度
  dst = Mat::zeros(src.size(), src.type());//初始化
  for (int row = 1; row < (rows - 1); row++){
   const uchar* previous = src.ptr(row - 1);//获前一行指针
   const uchar* current = src.ptr(row);//获取当前行指针
   const uchar* next = src.ptr(row + 1);//获取下一行指针
   uchar* output = dst.ptr(row);
   for (int col = offsetx; col < cols; col++) {
    output[col] = saturate_cast(5 * current[col] - (current[col - offsetx] + current[col + offsetx] + previous[col] + next[col]));
       //加入函数saturate_cast();来限制范围
   }
 }
  namedWindow("contrast image demo", CV_WINDOW_AUTOSIZE);
  imshow("contrast image demo",dst);

 waitKey(0);
 return 0;
}

opencvRGB-BGR通道转换及通道法灰度转换_第2张图片

测试:

#include 
#include 
#include
using namespace cv;
int main(int argc, char** argv) {
 Mat src, dst;
 src = imread("D:/图片资源/1.png");
 if (!src.data) {
  printf("could not load image...\n");
  return -1;
 }
 namedWindow("input image", CV_WINDOW_AUTOSIZE);
 imshow("input image",src);
 /*
 //获取图像宽度和高度,RGB图像有三个通道值
  int cols = (src.cols-1) * src.channels();//宽度=图像列*通道数
  int offsetx = src.channels();//图像通道
  int rows = src.rows; //高度=图像高度
  dst = Mat::zeros(src.size(), src.type());//初始化
  for (int row = 1; row < (rows - 1); row++){
   const uchar* previous = src.ptr(row - 1);//获前一行指针
   const uchar* current = src.ptr(row);//获取当前行指针
   const uchar* next = src.ptr(row + 1);//获取下一行指针
   uchar* output = dst.ptr(row);
   for (int col = offsetx; col < cols; col++) {
    output[col] = saturate_cast(5 * current[col] - (current[col - offsetx] + current[col + offsetx] + previous[col] + next[col]));
       //加入函数saturate_cast();来限制范围
   }
 }
 */
  //定义掩膜
  double t = getTickCount();
  Mat kernel = (Mat_(3, 3) << 0,-1,0,-1,5,-1,0,-1,0);
  filter2D(src,dst,src.depth(),kernel);//src.depth可以直接改为-1
  //解决方案花费的时间
  double timeconsume = (getTickCount() - t) / getTickFrequency();
  printf("tim consume %.2f",timeconsume);
  namedWindow("contrast image demo", CV_WINDOW_AUTOSIZE);
  imshow("contrast image demo",dst);

 waitKey(0);
 return 0;
}

RGB转化为BGR:

#include 
#include 
#include
using namespace cv;
using namespace std;
void my_channel_swap(Mat input_img)
{
 //图像宽度和高度,RGB图像有三个通道值
 Mat dst = Mat::zeros(input_img.size(), input_img.type());//初始化
 int width = input_img.cols;
 int height = input_img.rows;
 for (int j = 0; j < height; j++) {
  for (int i = 0; i < width; i++) {
   dst.at(j, i)[2] = input_img.at(j, i)[0];//R-B
   dst.at(j, i)[1] = input_img.at(j, i)[1];//G-G
   dst.at(j, i)[0] = input_img.at(j, i)[2];//B-R
  }
 }
 imshow("通道交换输出图像", dst);
}
int main(int argc, char** argv) {
 Mat src, dst;
 src = imread("D:/图片资源/1.png");
 if (!src.data) {
  printf("could not load image...\n");
  return -1;
 }
 namedWindow("input image", CV_WINDOW_AUTOSIZE);
 imshow("input image",src);
 my_channel_swap(src);
 /*提高图像对比度
 //获取图像宽度和高度,RGB图像有三个通道值
  int cols = (src.cols-1) * src.channels();//宽度=图像列*通道数
  int offsetx = src.channels();//图像通道
  int rows = src.rows; //高度=图像高度
  dst = Mat::zeros(src.size(), src.type());//初始化
  for (int row = 1; row < (rows - 1); row++){
   const uchar* previous = src.ptr(row - 1);//获前一行指针
   const uchar* current = src.ptr(row);//获取当前行指针
   const uchar* next = src.ptr(row + 1);//获取下一行指针
   uchar* output = dst.ptr(row);
   for (int col = offsetx; col < cols; col++) {
    output[col] = saturate_cast(5 * current[col] - (current[col - offsetx] + current[col + offsetx] + previous[col] + next[col]));
       //加入函数saturate_cast();来限制范围
   }
 }
 */
 
 waitKey(0);
 return 0;
}

opencvRGB-BGR通道转换及通道法灰度转换_第3张图片

灰度图像:(注意深度与通道数没设置对就会报错)

#include
#include
#include
using namespace cv;
void my_BGR2GRAY(Mat input_img)
{
 int width = input_img.cols;
 int height = input_img.rows;
 Mat dst(406, 404, CV_8UC1);//8是位图深度,U是char类型,1是通道数(灰度!!!)
 for (int j = 0; j < height; j++) {
  for (int i = 0; i < width; i++) {
   int b = input_img.at(j, i)[0];
   int g = input_img.at(j, i)[1];
   int r = input_img.at(j, i)[2];
   dst.at(j, i) = saturate_cast(0.2126*r + 0.7152*g + 0.0722*b);
  }
 }
 imshow("变换灰度之后", dst);
}
int main(int argc, char** aargv)
{
 Mat src, dst;
 src = imread("D:/图片资源/1.png");
 if (!src.data)
 {
  printf("...");
  return -1;
 }
 imshow("输入图像 ", src);
 my_BGR2GRAY(src);
 waitKey(0);
}

opencvRGB-BGR通道转换及通道法灰度转换_第4张图片

你可能感兴趣的:(opencv)