- 分布式离线计算—Spark—基础介绍
测试开发abbey
人工智能—大数据
原文作者:饥渴的小苹果原文地址:【Spark】Spark基础教程目录Spark特点Spark相对于Hadoop的优势Spark生态系统Spark基本概念Spark结构设计Spark各种概念之间的关系Executor的优点Spark运行基本流程Spark运行架构的特点Spark的部署模式Spark三种部署方式Hadoop和Spark的统一部署摘要:Spark是基于内存计算的大数据并行计算框架Spar
- Spark面试题
golove666
面试题大全spark大数据分布式面试
Spark面试题1.Spark基础概念1.1解释Spark是什么以及它的主要特点Spark是什么?Spark的主要特点1.2描述Spark运行时架构和组件主要的Spark架构组件:1.3讲述Spark中的弹性分布式数据集(RDD)和数据帧(DataFrame)弹性分布式数据集(RDD)主要特征:创建和转换:使用场景:数据帧(DataFrame)主要特征:创建和操作:使用场景:RDD与DataFra
- PySpark数据分析基础:PySpark基础功能及DataFrame操作基础语法详解_pyspark rdd
2401_84187537
数据分析数据挖掘
DataFrame.show()使用格式:df.show()df.show(1)+---+---+-------+----------+-------------------+|a|b|c|d|e|+---+---+-------+----------+-------------------+|1|2.0|string1|2000-01-01|2000-01-0112:00:00|+---+---
- PySpark数据分析基础:PySpark基础功能及DataFrame操作基础语法详解_pyspark rdd(1)
2401_84181368
程序员数据分析数据挖掘
dfDataFrame[a:bigint,b:double,c:string,d:date,e:timestamp]####通过由元组列表组成的RDD创建rdd=spark.sparkContext.parallelize([(1,2.,‘string1’,date(2000,1,1),datetime(2000,1,1,12,0)),(2,3.,‘string2’,date(2000,2,1),
- PySpark数据分析基础:PySpark基础功能及DataFrame操作基础语法详解_pyspark rdd(2)
2401_84181403
程序员数据分析数据挖掘
轻松切换到pandasAPI和PySparkAPI上下文,无需任何开销。有一个既适用于pandas(测试,较小的数据集)又适用于Spark(分布式数据集)的代码库。熟练使用pandas的话很快上手3.StreamingApacheSpark中的Streaming功能运行在Spark之上,支持跨Streaming和历史数据的强大交互和分析应用程序,同时继承了Spark的易用性和容错特性。SparkS
- Spark基础
Tom无敌宇宙猫
spark大数据分布式
一.基础1.RDD机制 1.rdd分布式弹性数据集,简单的理解成⼀种数据结构,是spark框架上的通⽤货币。所有算⼦都是基于rdd来执⾏的,不同的场景会有不同的rdd实现类,但是都可以进⾏互相转换。rdd执⾏过程中会形成dag图,然后形成lineage血缘关系保证容错性等。从物理的⾓度来看rdd存储的是block和node之间的映射。 2.RDD是spark提供的核⼼抽象,全称为弹性分布式数据
- Python学习路线 - Python高阶技巧 - PySpark案例实战
mry6
Pythonpython
Python学习路线-Python高阶技巧-PySpark案例实战前言介绍Spark是什么PythonOnSparkPySparkWhyPySpark基础准备PySpark库的安装构建PySpark执行环境入口对象PySpark的编程模型数据输入RDD对象Python数据容器转RDD对象读取文件转RDD对象数据计算map方法flatMap方法reduceByKey方法练习案例1filter方法di
- Spark大数据分析与实战笔记(第二章 Spark基础-06)
想你依然心痛
#Spark大数据分析与实战spark数据分析笔记
文章目录每日一句正能量2.6IDEA开发WordCount程序2.6.1本地模式执行Spark程序2.6.2集群模式执行Spark程序每日一句正能量我们全都要从前辈和同辈学习到一些东西。就连最大的天才,如果想单凭他所特有的内在自我去对付一切,他也决不会有多大成就。2.6IDEA开发WordCount程序Spark-Shell通常在测试和验证我们的程序时使用的较多,然而在生产环境中,通常会在IDEA
- Spark基础
cjyang
Spark基础几个重要的概念:RDD:是弹性分布式数据集(ResilientDistributedDataset)的简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型;DAG:是DirectedAcyclicGraph(有向无环图)的简称,反映RDD之间的依赖关系;Executor:是运行在工作节点(WorkerNode)上的一个进程,负责运行任务,并为应用程序存储数据;应用:用户
- Spark3学习笔记
魅Lemon
大数据spark
文章目录一、Spark基础1、Spark概述1.1Spark简介1.2SparkVSHadoop1.3Spark特点1.4Spark入门Demo2、Spark运行模式2.1概述2.2Local模式2.3Standalone模式2.4配置高可用(Standalone+HA)2.5Yarn模式2.6K8S&Mesos模式2.7Windows模式2.8部署模式对比2.9端口号3、Spark运行架构3.1
- Spark基础学习--基础介绍
Yan_bigdata
spark学习大数据mapreduce对比入门案例词频统计
1.Spark基本介绍1.1定义Spark是可以处理大规模数据的统一分布式计算引擎。1.2Spark与MapReduce的对比在之前我们学习过MapReduce,同样作为大数据分布式计算引擎,究竟这两者有什么区别呢?首先我们回顾一下MapReduce的架构:MR基于HDFS实现大数据存储,基于Yarn做资源调度,且MR是基于进程处理数据的总结一下MR的缺点:1.MR是基于进程进行数据处理,进程相对
- Spark基础
中长跑路上crush
Spark阶段spark大数据分布式
Spark基础建库一定要指定字符集,错了好多次了pip卸载某个模块pipuninstallpandas--下载其它的改掉pandas即可pipinstall-ihttps://pypi.tuna.tsinghua.edu.cn/simplepandas更新最新版本pippython-mpipinstall--upgradepip1、启动服务Hadoop启动全部服务*****/hadoop/sbin
- spark基础--学习笔记
祈愿lucky
大数据spark学习笔记
1spark介绍1.1spark概念ApacheSpark是专为大规模数据处理而设计的快速通用的分布式计算引擎,是开源的类HadoopMapReduce的通用分布式计算框架。和MapReduce一样,都是完成大规模数据的计算处理。简而言之,Spark借鉴了MapReduce思想发展而来,保留了其分布式并行计算的优点并改进了其明显的缺陷。让中间数据存储在内存中提高了运行速度、并提供丰富的操作数据的A
- 大数据之PySpark的RDD介绍
敲键盘的杰克
Spark大数据spark
文章目录前言一、RDD简介二、RDD的特性三、RDD的特点总结前言之前的文章主要介绍Spark基础知识,例如集群角色、Spark集群运行流程等,接下来会进一步讨论Spark相对核心的知识,让我们拭目以待,同时也期待各位的精彩留言!一、RDD简介RDD称为弹性分布式数据集,是Spark中最基本的数据抽象,其为一个不可变、可分区、元素可并行计算的集合;RDD中的数据是分布式存储,可用于并行计算,同时,
- Spark基础原理
小希 fighting
spark大数据python
SparkOnYarnSparkOnYarn的本质Spark专注于分布式计算,Yarn专注于资源管理,Spark将资源管理的工作交给了Yarn来负责SparkOnYarn两种部署方式Spark中有两种部署方式,Client和Cluster方式,默认是Client方式。这两种方式的本质区别,是Driver进程运行的地方不一样。Client部署方式:Driver进程运行在你提交程序的那台机器上优点:将
- Spark基础二
MSJ3917
spark大数据分布式
一.Spark入门案例总结1.读取文件:textFile(path):读取外部数据源,支持本地文件系统和hdfs文件系统.2.将结果数据输出文件上:saveAsTextFile(path):将数据输出到外部存储系统,支持本地文件系统和hdfs文件系统.3.文件路径协议:本地:file///路径hdfs:hdfs://虚拟机ip地址:8020/路径4.排序相关的API:sortBy(参数1,参数2)
- Spark基础知识
MSJ3917
spark大数据分布式
一.SPark基本介绍1.Spark是什么?1.1定义ApacheSpark是用于大数据处理的统一分析引擎;1.2Spark与MapReduce对比MapReduce的主要缺点:①MapReduce是基于进程进行数据处理,进程相对与线程来说,创造和销毁的过程比较耗费资源,并且速度比较慢;②MapReduce在运行的时候,中间有大量的磁盘IO过程,也就是磁盘数据到内存,内存到磁盘的读写过程;③Map
- Spark基础内容
小希 fighting
spark大数据分布式
Spark基本介绍Spark是什么定义ApacheSpark是用于大规模数据(large-scaladata)处理的统一(unified)分析引擎.Spark与MapReduce对比mapreduce架构图如下:MapReduce的主要缺点:1-MapReduce是基于进程进行数据处理,进程相对线程来说,在创建和销毁的过程比较消耗资源,并且速度比较慢2-MapReduce运行的时候,中间有大量的磁
- Spark大数据分析与实战笔记(第二章 Spark基础-05)
想你依然心痛
spark数据分析笔记
文章目录每日一句正能量前言2.5启动Spark-Shell2.5.1运行Spark-Shell命令2.5.2运行Spark-Shell读取HDFS文件后记每日一句正能量成长是一条必走的路路上我们伤痛在所难免。前言在大数据处理和分析领域,Spark被广泛应用于解决海量数据处理和实时计算的挑战。作为一个快速、可扩展且易于使用的分布式计算框架,Spark为开发人员提供了丰富的API和工具来处理和分析大规
- Spark大数据分析与实战笔记(第二章 Spark基础-04)
想你依然心痛
#Spark大数据分析与实战spark笔记大数据
文章目录每日一句正能量引言章节概要2.4体验第一个Spark程序2.4.1运行Spark官方示例SparkPi总结每日一句正能量“春风十里,不如你。”这句来自现代作家安妮宝贝的经典句子,它表达了对他人的赞美与崇拜。每个人都有着不同的闪光点和特长,在这个世界上,不必去羡慕别人的光芒,自己所拥有的价值是独一无二的。每个人都有无限的潜力和能力,只要勇敢展现自己,就能在人生舞台上绽放光彩。每天鼓励自己,相
- Spark大数据分析与实战笔记(第二章 Spark基础-03)
想你依然心痛
#Spark大数据分析与实战spark架构原理
文章目录每日一句正能量章节概要2.3Spark运行架构与原理2.3.1基本概念2.3.2Spark集群运行架构2.3.3Spark运行基本流程总结每日一句正能量又回到了原点,就从现在开始我的新生活吧。章节概要章节概要:Spark运行架构与原理I.引言A.概述SparkB.Spark的特点和优势II.Spark运行架构概述A.Spark集群模式B.Spark运行模式C.Spark执行引擎:Spark
- Spark基础解析(一)
有语忆语
大数据之Sparkspark大数据分布式
1、Spark概述1.1什么是Spark1.2Spark内置模块SparkCore:实现了Spark的基本功能,包含任务调度、内存管理、错误恢复、与存储系统交互等模块。SparkCore中还包含了对弹性分布式数据集(ResilientDistributedDataSet,简称RDD)的API定义。SparkSQL:是Spark用来操作结构化数据的程序包。通过SparkSQL,我们可以使用SQL或者
- Spark大数据分析与实战笔记(第二章 Spark基础-02)
想你依然心痛
#Spark大数据分析与实战spark数据分析笔记
文章目录每日一句正能量章节概要2.2搭建Spark开发环境2.2.1环境准备2.2.2Spark的部署方式2.2.3Spark集群安装部署一、Spark下载二、Spark安装三、环境变量配置2.2.4SparkHA集群部署一、集群部署二、运行测试三、多学一招每日一句正能量人生就像赛跑,不在乎你是否第一个到达尽头,而在乎你有没有跑完全程。章节概要Spark于2009年诞生于美国加州大学伯克利分校的A
- Spark大数据分析与实战笔记(第二章 Spark基础-01)
想你依然心痛
#Spark大数据分析与实战spark
文章目录第2章Spark基础章节概要2.1初识Spark2.1.1Spark概述2.1.2Spark的特点2.1.3Spark应用场景2.1.4Spark与Hadoop对比第2章Spark基础章节概要Spark于2009年诞生于美国加州大学伯克利分校的AMP实验室,它是一个可应用于大规模数据处理的统一分析引擎。Spark不仅计算速度快,而且内置了丰富的API,使得我们能够更加容易编写程序。2.1初
- 一文详解pyspark常用算子与API
不负长风
数据分析spark
rdd.glom()对rdd的数据进行嵌套,嵌套按照分区来进行rdd=sc.parallelize([1,2,3,4,5,6,7,8,9],2)print(rdd.glom().collect())输出:[[1,2,3,4],[5,6,7,8,9]]参考PySpark基础入门(2):RDD及其常用算子_sparkrdd随机抽样-CSDN博客
- Spark基础入门
李昊哲小课
大数据人工智能数据分析大数据数据分析机器学习
spark基础入门环境搭建localstandlonesparkhasparkcodesparkcoresparksqlsparkstreaming环境搭建准备工作创建安装目录mkdir/opt/softcd/opt/soft下载scalawgethttps://downloads.lightbend.com/scala/2.13.12/scala-2.13.12.tgz-P/opt/soft解压
- spark mllib和spark ml机器学习基础知识
厨 神
大数据pythonspark
spark机器学习SparkMLib完整基础入门教程-y-z-f-博客园(cnblogs.com)参考spark机器学习简介机械学习是一门人工智能的科学,用于研究人工智能,强调算法,经验,性能开发者任务:spark基础+了解机器学习原理+相关参数含义millib:分类回归聚类协同过滤降维特征化:特则提取转化降维选择公交管道:构建评估调整机器学习管道持久性:保存和加载算法,模型和管道实用工具:线代(
- 【Spark基础】-- 理解 Spark shuffle
high2011
Sparkspark大数据分布式
目录前言1、什么是Sparkshuffle?2、Spark的三种shuffle实现3、参考前言以前,Spark有3种不同类型的shuffle实现。每种实现方式都有他们自己的优缺点。在我们理解Sparkshuffle之前,需要先熟悉Spark的executionmodel和一些基础概念,如:MapReduce、逻辑计
- 【Spark基础】-- RDD、DataFrame 和 Dataset 的对比
high2011
Sparkspark大数据分布式
目录一、简要介绍RDD、DataFrame和DataSet1、RDD1.1什么是RDD?1.2RDD的五大特性是什么?
- 【Spark基础】-- RDD 转 Dataframe 的三种方式
high2011
Spark大数据综合spark大数据分布式
目录一、环境说明二、RDD转Dataframe的方法1、通过StructType创建Dataframe(强烈推荐使用这种方法)
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源