pytorch之ResNet18(对cifar10数据进行分类准确度达到94%)

**

pytorch之ResNet18(对cifar10数据进行分类准确度达到94%)

**
分为几个步骤:

  • 准备数据
  • 训练数据
  • 测试数据

导入库

import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import argparse

深度残差网络ResNet18

class ResidualBlock(nn.Module):
    def __init__(self, inchannel, outchannel, stride=1):
        super(ResidualBlock, self).__init__()
        self.left = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(outchannel),
            nn.ReLU(inplace=True),
            nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(outchannel)
        )
        self.shortcut = nn.Sequential()
        if stride != 1 or inchannel != outchannel:
            self.shortcut = nn.Sequential(
                nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(outchannel)
            )

    def forward(self, x):
        out = self.left(x)
        out += self.shortcut(x)
        out = F.relu(out)
        return out

class ResNet(nn.Module):
    def __init__(self, ResidualBlock, num_classes=10):
        super(ResNet, self).__init__()
        self.inchannel = 64
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(),
        )
        self.layer1 = self.make_layer(ResidualBlock, 64,  2, stride=1)
        self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)
        self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)
        self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)
        self.fc = nn.Linear(512, num_classes)

    def make_layer(self, block, channels, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)   #strides=[1,1]
        layers = []
        for stride in strides:
            layers.append(block(self.inchannel, channels, stride))
            self.inchannel = channels
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.conv1(x)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out


def ResNet18():

    return ResNet(ResidualBlock)

参数设置

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--outf', default='./model/m/', help='folder to output images and model checkpoints') #输出结果保存路径
parser.add_argument('--net', default='./model/m/Resnet18.pth', help="path to net (to continue training)")  #恢复训练时的模型路径
args = parser.parse_args()

# 超参数设置
EPOCH = 200   #遍历数据集次数
pre_epoch = 0  # 定义已经遍历数据集的次数
BATCH_SIZE = 128      #批处理尺寸(batch_size)
LR = 0.1        #学习率

定义是否使用GPU

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

准备数据集并预处理

transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),  #先四周填充0,在吧图像随机裁剪成32*32
    transforms.RandomHorizontalFlip(),  #图像一半的概率翻转,一半的概率不翻转
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #R,G,B每层的归一化用到的均值和方差
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])

trainset = torchvision.datasets.CIFAR10(root='./data/cifar/', train=True, download=True, transform=transform_train) #训练数据集
trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)   #生成一个个batch进行批训练,组成batch的时候顺序打乱取

testset = torchvision.datasets.CIFAR10(root='./data/cifar/', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
# Cifar-10的标签
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

模型定义-ResNet

net = ResNet18().to(device)

定义损失函数和优化方式

criterion = nn.CrossEntropyLoss()  #损失函数为交叉熵,多用于多分类问题
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9, weight_decay=5e-4) #优化方式为mini-batch momentum-SGD,并采用L2正则化(权重衰减)

训练

if __name__ == "__main__":
    best_acc = 0  # 初始化best test accuracy
    print("Start Training, Resnet-18!")  # 定义遍历数据集的次数
    with open("acc.txt", "w") as f:
        with open("log.txt", "w")as f2:
            for epoch in range(pre_epoch, EPOCH):
                print('\nEpoch: %d' % (epoch + 1))
                '''
                asas=1
                if epoch % asas ==0:
           
                   fe='/home/cc/Desktop/dj/model1/model/incption--{}'.format(epoch)
                   torch.save(net.state_dict(),fe)
                '''
                net.train()
                sum_loss = 0.0
                correct = 0.0
                total = 0.0
                for i, data in enumerate(trainloader, 0):
                    # 准备数据
                    length = len(trainloader)
                    inputs, labels = data
                    inputs, labels = inputs.to(device), labels.to(device)
                    optimizer.zero_grad()

                    # forward + backward
                    outputs = net(inputs)
                    loss = criterion(outputs, labels)
                    loss.backward()
                    optimizer.step()

                    # 每训练1个batch打印一次loss和准确率
                    sum_loss += loss.item()
                    _, predicted = torch.max(outputs.data, 1)
                    total += labels.size(0)
                    correct += predicted.eq(labels.data).cpu().sum()
                    '''
                    qw=100. * correct / total
                    ee=qw.cpu().numpy()
                    train_a.writelines('epoch:'+str(epoch + 1)+'     '+'iter:'+str(i + 1 + epoch * length)+'   '+'Loss:'+str(sum_loss / (i + 1))+'   '+'acc:'+str(ee)+'%'+'\n')
                    '''
                    print('[epoch:%d, iter:%d] Loss: %.03f | Acc: %.3f%% '
                          % (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
                    f2.write('%03d  %05d |Loss: %.03f | Acc: %.3f%% '
                          % (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
                    f2.write('\n')
                    f2.flush()
                
                # 每训练完一个epoch测试一下准确率
                print("Waiting Test!")
                with torch.no_grad():
                    correct = 0
                    total = 0
                    for data in testloader:
                        net.eval()
                        images, labels = data
                        images, labels = images.to(device), labels.to(device)
                        outputs = net(images)
                        # 取得分最高的那个类 (outputs.data的索引号)
                        _, predicted = torch.max(outputs.data, 1)
                        total += labels.size(0)
                        correct += (predicted == labels).cpu().sum()
                    print('测试分类准确率为:%.3f%%' % (100 * correct / total))
                    acc = 100. * correct / total
                    
                    # 将每次测试结果实时写入acc.txt文件中
                    print('Saving model......')
                    torch.save(net.state_dict(), '%s/net_%03d.pth' % (args.outf, epoch + 1))
                    f.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, acc))
                    f.write('\n')
                    f.flush()
                    # 记录最佳测试分类准确率并写入best_acc.txt文件中
                    if acc > best_acc:
                        f3 = open("best_acc.txt", "w")
                        f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1, acc))
                        f3.close()
                        best_acc = acc
            print("Training Finished, TotalEPOCH=%d" % EPOCH)

此方法能够将cifar数据训练至九十多点,还需要加入学习率调整,使得训练更为准确

训练训练好的模型的方法:

we='/home/cc/Desktop/dj/model1/model/net-07.pth'
net.load_state_dict(torch.load(we))#加载net-07.pth模型
net=net.to(device)#放置gpu或cpu上,后面训练步骤和之前一样,从之前保存的模型处继续训练

你可能感兴趣的:(pytorch)