resnet框架笔记

目的:深度残差网络(ResNets)具有较低的训练误差和测试误差。

在论文中介绍了一个深层次的残差学习框架来解决精准度下降问题。我们明确地让这些层适合残差映射,而不是寄希望于每一个堆叠层直接适合一个所需的底层映射。形式上,把H(x)作为所需的基本映射,让堆叠的非线性层适合另一个映射F(x):=H(x)-x。那么原映射便转化成:F(x)+x。我们假设优化剩余的映射,比优化原来未引用的映射更容易。如果身份映射是最佳的,那么将剩余的映射推为零,就比用一堆非线性层来适应身份映射更容易。
公式F(x)+x可以通过“快捷连接”前馈神经网络实现。快捷连接是那些跳过中的一层或更多层。在我们的情景中,快捷连接简单的执行身份映射,并将它们的输出添加到叠加层的输出。身份快捷连接添加既不产生额外的参数,也会增加不计算的复杂度。通过反向传播的SGD,整个网络仍然可以被训练成终端到端的形式,并且可以在没有修改器的情况下很容易的使用公共资料库(例如Caffe)。

两种resnet设计——bottle_neck
左图bottle_neck=False,右图bottle_neck=True;bottle_neck目的就是在resnet层数较多时,使用较少的参数数量。
{这两种结构分别针对ResNet(左图)和ResNet(右图),一般称整个结构为一个”building block“。其中右图又称为”bottleneck design”,目的一目了然,就是为了降低参数的数目,第一个1x1的卷积把256维channel降到64维,然后在最后通过1x1卷积恢复,整体上用的参数数目:1x1x256x64 + 3x3x64x64 + 1x1x64x256 = 69632,而不使用bottleneck的话就是两个3x3x256的卷积,参数数目: 3x3x256x256x2 = 1179648,差了16.94倍。}
resnet框架笔记_第1张图片
一个stage中的两个units
下图为resnet18中一个stage的框架示意图。左下unit负责降低特征图片的size,增加特征图片的channel;右上unit负责增加resnet深度,并不进行size上的变化。
resnet框架笔记_第2张图片
residual_unit mxnet 实现代码

def residual_unit(data, num_filter, stride, dim_match, name, bottle_neck=True, bn_mom=0.9, workspace=256, memonger=False):
    """Return ResNet Unit symbol for building ResNet
    Parameters
    ----------
    data : str
        Input data
    num_filter : int
        Number of output channels
    bnf : int
        Bottle neck channels factor with regard to num_filter
    stride : tuple
        Stride used in convolution
    dim_match : Boolean
        True means channel number between input and output is the same, otherwise means differ
    name : str
        Base name of the operators
    workspace : int
        Workspace used in convolution operator
    """
    if bottle_neck:
        # the same as https://github.com/facebook/fb.resnet.torch#notes, a bit difference with origin paper
        bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn1')
        act1 = mx.sym.Activation(data=bn1, act_type='relu', name=name + '_relu1')
        conv1 = mx.sym.Convolution(data=act1, num_filter=int(num_filter*0.25), kernel=(1,1), stride=(1,1), pad=(0,0),
                                   no_bias=True, workspace=workspace, name=name + '_conv1')
        bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn2')
        act2 = mx.sym.Activation(data=bn2, act_type='relu', name=name + '_relu2')
        conv2 = mx.sym.Convolution(data=act2, num_filter=int(num_filter*0.25), kernel=(3,3), stride=stride, pad=(1,1),
                                   no_bias=True, workspace=workspace, name=name + '_conv2')
        bn3 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn3')
        act3 = mx.sym.Activation(data=bn3, act_type='relu', name=name + '_relu3')
        conv3 = mx.sym.Convolution(data=act3, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True,
                                   workspace=workspace, name=name + '_conv3')
        if dim_match:
            shortcut = data
        else:
            shortcut = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
                                            workspace=workspace, name=name+'_sc')
        if memonger:
            shortcut._set_attr(mirror_stage='True')
        return conv3 + shortcut
    else:
        bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn1')
        act1 = mx.sym.Activation(data=bn1, act_type='relu', name=name + '_relu1')
        conv1 = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(3,3), stride=stride, pad=(1,1),
                                      no_bias=True, workspace=workspace, name=name + '_conv1')
        bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn2')
        act2 = mx.sym.Activation(data=bn2, act_type='relu', name=name + '_relu2')
        conv2 = mx.sym.Convolution(data=act2, num_filter=num_filter, kernel=(3,3), stride=(1,1), pad=(1,1),
                                      no_bias=True, workspace=workspace, name=name + '_conv2')
        if dim_match:
            shortcut = data
        else:
            shortcut = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
                                            workspace=workspace, name=name+'_sc')
        if memonger:
            shortcut._set_attr(mirror_stage='True')
        return conv2 + shortcut

参考博文

https://www.leiphone.com/news/201608/vhqwt5eWmUsLBcnv.html
http://www.mamicode.com/info-detail-2278503.html

你可能感兴趣的:(AI)