翻译自:https://pymotw.com/3/functools/index.html
functools模块提供了调整和扩展函数以及其他 callable objects的工具方法。
1)partial函数
partial函数可用来修改函数的默认参数值,增加额外的位置参数(positional arguments)或名称参数( named arguments),你不需再重新定义函数,只需像使用原函数一样的使用partial包裹后的函数。
import functools
def myfunc(a, b=2):
"Docstring for myfunc()."
print(' called myfunc with:', (a, b))
def show_details(name, f, is_partial=False):
"Show details of a callable object."
print('{}:'.format(name))
print(' object:', f)
if not is_partial:
print(' __name__:', f.__name__)
if is_partial:
print(' func:', f.func)
print(' args:', f.args)
print(' keywords:', f.keywords)
return
show_details('myfunc', myfunc)
myfunc('a', 3)
print()
# Set a different default value for 'b', but require
# the caller to provide 'a'.
p1 = functools.partial(myfunc, b=4)
show_details('partial with named default', p1, True)
p1('passing a')
p1('override b', b=5)
print()
# Set default values for both 'a' and 'b'.
p2 = functools.partial(myfunc, 'default a', b=99)
show_details('partial with defaults', p2, True)
p2()
p2(b='override b')
print()
print('Insufficient arguments:')
p1()
#结果
myfunc:
object: 0x1007a6a60>
__name__: myfunc
called myfunc with: ('a', 3)
partial with named default:
object: functools.partial(0x1007a6a60>,
b=4)
func: 0x1007a6a60>
args: ()
keywords: {'b': 4}
called myfunc with: ('passing a', 4)
called myfunc with: ('override b', 5)
partial with defaults:
object: functools.partial(0x1007a6a60>,
'default a', b=99)
func: 0x1007a6a60>
args: ('default a',)
keywords: {'b': 99}
called myfunc with: ('default a', 99)
called myfunc with: ('default a', 'override b')
Insufficient arguments:
Traceback (most recent call last):
File "functools_partial.py", line 51, in
p1()
TypeError: myfunc() missing 1 required positional argument: 'a'
partial不仅可用于函数,其他的 callable object也可以也可以使用。
import functools
class MyClass:
"Demonstration class for functools"
def __call__(self, e, f=6):
"Docstring for MyClass.__call__"
print(' called object with:', (self, e, f))
def show_details(name, f):
"Show details of a callable object."
print('{}:'.format(name))
print(' object:', f)
print(' __name__:', end=' ')
try:
print(f.__name__)
except AttributeError:
print('(no __name__)')
print(' __doc__', repr(f.__doc__))
return
o = MyClass()
show_details('instance', o)
o('e goes here') #会调用MyClass的__call__函数
print()
p = functools.partial(o, e='default for e', f=8)
functools.update_wrapper(p, o)
show_details('instance wrapper', p)
p() #会调用MyClass的__call__函数
#结果
instance:
object: <__main__.MyClass object at 0x1011b1cf8>
__name__: (no __name__)
__doc__ 'Demonstration class for functools'
called object with: (<__main__.MyClass object at 0x1011b1cf8>,
'e goes here', 6)
instance wrapper:
object: functools.partial(<__main__.MyClass object at
0x1011b1cf8>, f=8, e='default for e')
__name__: (no __name__)
__doc__ 'Demonstration class for functools'
called object with: (<__main__.MyClass object at 0x1011b1cf8>,
'default for e', 8)
2)update_wrapper函数
通过partial生成的函数通常会缺失name,doc等属性,可用update_wrapper进行更新。
import functools
def myfunc(a, b=2):
"Docstring for myfunc()."
print(' called myfunc with:', (a, b))
def show_details(name, f):
"Show details of a callable object."
print('{}:'.format(name))
print(' object:', f)
print(' __name__:', end=' ')
try:
print(f.__name__)
except AttributeError:
print('(no __name__)')
print(' __doc__', repr(f.__doc__))
print()
show_details('myfunc', myfunc)
p1 = functools.partial(myfunc, b=4)
show_details('raw wrapper', p1)
print('Updating wrapper:')
print(' assign:', functools.WRAPPER_ASSIGNMENTS)
print(' update:', functools.WRAPPER_UPDATES)
print()
functools.update_wrapper(p1, myfunc)
show_details('updated wrapper', p1)
#结果
myfunc:
object: <function myfunc at 0x1018a6a60>
__name__: myfunc
__doc__ 'Docstring for myfunc().'
raw wrapper:
object: functools.partial(0x1018a6a60 >,
b=4)
__name__: (no __name__)
__doc__ 'partial(func, *args, **keywords) - new function with
partial application\n of the given arguments and keywords.\n'
Updating wrapper:
assign: ('__module__', '__name__', '__qualname__', '__doc__',
'__annotations__')
update: ('__dict__',)
updated wrapper:
object: functools.partial(0x1018a6a60 >,
b=4)
__name__: myfunc
__doc__ 'Docstring for myfunc().'
3)partialmethod函数
partialmethod可用来将一个函数变成类方法。
import functools
def standalone(self, a=1, b=2):
"Standalone function"
print(' called standalone with:', (self, a, b))
if self is not None:
print(' self.attr =', self.attr)
class MyClass:
"Demonstration class for functools"
def __init__(self):
self.attr = 'instance attribute'
method1 = functools.partialmethod(standalone)
method2 = functools.partial(standalone)
o = MyClass()
print('standalone')
standalone(None)
print()
print('method1 as partialmethod')
o.method1()
print()
print('method2 as partial')
try:
o.method2()
except TypeError as err:
print('ERROR: {}'.format(err))
#结果
standalone
called standalone with: (None, 1, 2)
method1 as partialmethod
called standalone with: (<__main__.MyClass object at
0x1007b1d30>, 1, 2)
self.attr = instance attribute
method2 as partial
ERROR: standalone() missing 1 required positional argument:
'self'
1)total_ordering
只要提供 eq() 以及另一个任意比较函数,即可自动补齐所有的比较实现
import functools
import inspect
from pprint import pprint
@functools.total_ordering
class MyObject:
def __init__(self, val):
self.val = val
def __eq__(self, other):
print(' testing __eq__({}, {})'.format(
self.val, other.val))
return self.val == other.val
def __gt__(self, other):
print(' testing __gt__({}, {})'.format(
self.val, other.val))
return self.val > other.val
print('Methods:\n')
pprint(inspect.getmembers(MyObject, inspect.isfunction))
a = MyObject(1)
b = MyObject(2)
print('\nComparisons:')
for expr in ['a < b', 'a <= b', 'a == b', 'a >= b', 'a > b']:
print('\n{:<6}:'.format(expr))
result = eval(expr)
print(' result of {}: {}'.format(expr, result))
#结果
Methods:
[('__eq__', 0x10139a488>),
('__ge__', 0x1012e2510>),
('__gt__', 0x10139a510>),
('__init__', 0x10139a400>),
('__le__', 0x1012e2598>),
('__lt__', 0x1012e2488>)]
Comparisons:
a < b :
testing __gt__(1, 2)
testing __eq__(1, 2)
result of a < b: True
a <= b:
testing __gt__(1, 2)
result of a <= b: True
a == b:
testing __eq__(1, 2)
result of a == b: False
a >= b:
testing __gt__(1, 2)
testing __eq__(1, 2)
result of a >= b: False
a > b :
testing __gt__(1, 2)
result of a > b: False
2)cmp_to_key
由于旧式的比较函数已在 Python 3 中已过时,像 sort() 等函数中的 cmp 参数也已不再被支持了。
旧式的比较函数是一个接受两个参数的可调用对象,并返回一个整数,负数表示小于,0 表示相等,正数表示大小。键函数 key function 是一个只接受一个参数,并返回一个作为排序键的函数。
使用 cmp_to_key() 可将老式的比较函数转成键函数,用于像 sorted(), min(), max(), heapq.nlargest(), heapq.nsmallest(), itertools.groupby() 等函数中。
import functools
class MyObject:
def __init__(self, val):
self.val = val
def __str__(self):
return 'MyObject({})'.format(self.val)
def compare_obj(a, b):
"""Old-style comparison function.
"""
print('comparing {} and {}'.format(a, b))
if a.val < b.val:
return -1
elif a.val > b.val:
return 1
return 0
# Make a key function using cmp_to_key()
get_key = functools.cmp_to_key(compare_obj)
objs = [MyObject(x) for x in range(5, 0, -1)]
for o in sorted(objs, key=get_key):
print(o)
#结果
comparing MyObject(4) and MyObject(5)
comparing MyObject(3) and MyObject(4)
comparing MyObject(2) and MyObject(3)
comparing MyObject(1) and MyObject(2)
MyObject(1)
MyObject(2)
MyObject(3)
MyObject(4)
MyObject(5)
1)lru_cache函数
lru_cache函数将函数的最近调用情况进行缓存,以传入函数的参数为hash key,并记录该参数的调用结果,后续同样的函数参数值调用时,就不用重复执行函数逻辑。
import functools
@functools.lru_cache()
def expensive(a, b):
print('expensive({}, {})'.format(a, b))
return a * b
MAX = 2
print('First set of calls:')
for i in range(MAX):
for j in range(MAX):
expensive(i, j)
print(expensive.cache_info())
print('\nSecond set of calls:')
for i in range(MAX + 1):
for j in range(MAX + 1):
expensive(i, j)
print(expensive.cache_info())
print('\nClearing cache:')
expensive.cache_clear()
print(expensive.cache_info())
print('\nThird set of calls:')
for i in range(MAX):
for j in range(MAX):
expensive(i, j)
print(expensive.cache_info())
#结果
First set of calls:
expensive(0, 0)
expensive(0, 1)
expensive(1, 0)
expensive(1, 1)
CacheInfo(hits=0, misses=4, maxsize=128, currsize=4)
Second set of calls:
expensive(0, 2)
expensive(1, 2)
expensive(2, 0)
expensive(2, 1)
expensive(2, 2)
CacheInfo(hits=4, misses=9, maxsize=128, currsize=9)
Clearing cache:
CacheInfo(hits=0, misses=0, maxsize=128, currsize=0)
Third set of calls:
expensive(0, 0)
expensive(0, 1)
expensive(1, 0)
expensive(1, 1)
CacheInfo(hits=0, misses=4, maxsize=128, currsize=4)
为了防止缓存无限增长,lru_cache规定默认最大为128 entries,但这个值可以设置,如@functools.lru_cache(maxsize=2)
1)reduce函数
reduce函数以一个callable和a sequence of data为入参,生成单个数值,该数值是用sequence中的值传入callable, 并且accumute resulting output。
#相加求和
import functools
def do_reduce(a, b):
print('do_reduce({}, {})'.format(a, b))
return a + b
data = range(1, 5)
print(data)
result = functools.reduce(do_reduce, data) #可以指定base值,如result = functools.reduce(do_reduce, data, 99),就是基数值为99
print('result: {}'.format(result))
#结果
range(1, 5)
do_reduce(1, 2)
do_reduce(3, 3)
do_reduce(6, 4)
result: 10
1)singledispatch函数
有时函数入参类型不同, 函数处理逻辑可能也不同, singlepatch提供了这样一种机制,可以在默认函数实现的基础上注册其他不同类型入参的函数逻辑实现。
import functools
@functools.singledispatch
def myfunc(arg):
print('default myfunc({!r})'.format(arg))
@myfunc.register(int)
def myfunc_int(arg):
print('myfunc_int({})'.format(arg))
@myfunc.register(list)
def myfunc_list(arg):
print('myfunc_list()')
for item in arg:
print(' {}'.format(item))
myfunc('string argument')
myfunc(1)
myfunc(2.3)
myfunc(['a', 'b', 'c'])
#结果
default myfunc('string argument')
myfunc_int(1)
default myfunc(2.3)
myfunc_list()
a
b
c
如果找不到确切匹配的函数,会尝试找一个最接近的函数实现。