- PLUTO:突破基于模仿学习的自动驾驶规划极限
硅谷秋水
机器学习自动驾驶人工智能自动驾驶人工智能机器学习计算机视觉
24年4月来自香港科技大学的论文“PLUTO:PushingtheLimitofImitationLearning-basedPlanningforAutonomousDriving”。PLUTO,突破基于模仿学习的自动驾驶规划极限。改进来自三个关键方面:一种纵向横向感知模型架构,可实现灵活多样的驾驶行为;一种创新的辅助损失计算方法,可广泛应用且可高效地进行批量计算;一种利用对比学习的训练框架,采
- Pandas数据处理基础6---插值填充及其用法
阳光下的米雪
Pandas数据处理python
插值填充插值是数值分析中一种方法。简而言之,就是借助于一个函数(线性或非线性),再根据已知数据去求解未知数据的值。插值在数据领域非常常见,它的好处在于,可以尽量去还原数据本身的样子。我们可以通过interpolate()方法完成线性插值。当然,其他一些插值算法可以阅读官方文档了解。#生成一个DataFramedf=pd.DataFrame({'A':[1.1,2.2,np.nan,4.5,
- 应用光学的几组公式
萌龙在天
在不同的区域,有不同的计算公式。由于需要对大量光线进行计算,所以计算方法的选择就和重要。优先选择可以消除中间量的计算公式。近轴光线追迹所遵循的公式。其次就是几组放大率的公式,转面公式,拉赫不变量。各个光学系统的分辨率,孔径,入瞳,出瞳之间所遵循的公式。计算像差的公式。符号所代表的意义,以及符号与符号间的联系,需要认真的去用笔去写下来,分析和理解。最主要的就是要明白光学系统所规定的符号规则,正确的标
- 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】工业相机
格图素书
数码相机目标检测人工智能
目录知识储备深度相机1TOF2双目视觉3结构光4智能门锁应用5手机应用算法原理相机的成像与标定模型相机标定的实施·标定过程的算法实施相机标定的扩展CCD工业相机、镜头倍率及相关参数计算方法知识储备深度相机1TOF1.1Kinectv2Kinectv2是Microsoft在2014年发售的,如图1-1所示。相比于Kinectv1在硬件和软件上作出了很大的进化,且在深度测量的系统和非系统误差方面表现出
- 2022-04-17
图灵基因
NatBiotech|组织中单细胞转录组的空间图谱原创图灵基因图灵基因2022-04-1707:03收录于话题#前沿生物大数据分析单细胞RNA测序(scRNA-seq)已经彻底改变了单细胞水平上的基因表达研究。最近,空间技术通过添加空间信息将转录组学提升到了一个新的水平。但是,它缺乏单细胞分辨率。现在,来自德克萨斯大学MD安德森癌症中心的一个小组开发了一种名为CellTrek的计算方法,将这两个数
- 计算机视觉中,如何理解自适应和注意力机制的关系?
Wils0nEdwards
计算机视觉人工智能
自适应和注意力机制之间的关系密切相关,注意力机制本质上是一种自适应的计算方法,它能够根据输入数据的不同特点,自主选择和聚焦于输入的某些部分或特征。以下是两者之间的具体关系和如何理解它们:1.注意力机制的自适应特性注意力机制的核心功能是为不同输入元素(如特征、位置、通道等)分配不同的权重。这些权重是通过学习动态生成的,表示模型对不同输入元素的关注程度。由于这些权重是根据具体的输入数据动态计算的,因此
- Python科学计算实战:数学建模与数值分析应用
数据小爬虫
api电商api数学建模python开发语言pygame前端facebook数据库
Python在科学计算和数学建模方面有着广泛的应用。以下是一个简单的例子,使用Python进行数学建模和数值分析。这个例子将演示如何使用Python来求解一元二次方程。1.一元二次方程一元二次方程是一个形如(ax^2+bx+c=0)的方程,其中(a\neq0)。2.求解方法求解一元二次方程,我们通常使用公式:[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}]3.Python实现i
- 子网ip和ip地址一样吗?子网ip地址怎么算
hgdlip
iptcp/ip网络协议网络子网ip
在计算机网络的广阔世界里,IP地址作为设备的唯一标识,扮演着举足轻重的角色。然而,随着网络规模的扩大和复杂性的增加,子网划分成为提升网络管理效率和安全性的重要手段。这时,“子网IP地址”这一概念应运而生,那么。子网IP和IP地址一样吗?本文将深入探讨子网IP地址与普通IP地址之间的差异,并详细解析子网IP地址的计算方法,帮助读者更好地理解和应用这一网络知识。一、子网IP地址
- Python求解微分方程
@星辰大海@
python开发语言
一、引言微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。微分方程种类很多,具体分类可参考以下博主的文章:https://blog.csdn.net/air_729/article/details/139411996微分方程的解又分成通解和特解,在工程中大多数微分方程是很难得到通解的,因此出现了数值分析或者计算方法这门学科,通过一次次迭代得到方程的某一个或某几个特解,本文
- 《比的意义》教学反思
白沙小学唐媛媛
《比的意义》,这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:(1)比值的表示法,通常用分数表示,
- wpl计算方法_C++二叉树计算带权路径长度(WPL)的算法
weixin_39878549
wpl计算方法
题目:二叉树的带权路径长度是二叉树中所有叶子结点的带权路径长度之和。给定二叉链表的存储的结点结构为left|weight|right存储的是叶子结点的非负权值。设计算法求二叉树的带权路径长度WPL。WPL=∑叶子结点的权值×结点到根结点的分支个数例如:非递归算法算法思想:根据公式,需要记录每个结点到根结点的分支个数,这个过程通过对树进行广度遍历(借助队列)进行记录。在非叶子结点weight初值为-
- python读二进制格点雷达基数据_radar: 基于python pycinrad 以及多种类库 编写基于java 的雷达基数据统一格式读取...
weixin_39793434
radar-core介绍基于pythonpycinrad以及多种类库编写基于java的雷达基数据统一格式读取包括读取分层ppi、插值到等经纬度的网格化ppi以及cappi、vcs等基本计算方法回波顶高、组合反射率、垂直液态水等产品计算后期增加1、气象局l3、swan雷达格式读取2、降水估计、光流+半拉格朗日外推等多种雷达算法软件架构1、radar-core雷达基数据读取类库(1)读取方法Strin
- 数值分析——LU分解(LU Factorization)
怀帝阍而不见
计算数学c++
本系列整理自博主21年秋季学期本科课程数值分析I的编程作业,内容相对基础,参考书:DavidKincaid,WardCheney-NumericalAnalysisMathematicsofScientificComputing(2002,AmericalMathematicalSociety)目录背景LU分解(LU-Factorization)辅助部分Doolittle分解Cholesky分解定
- 位操作(Bitwise Operation)
学Java的skyyyyyyyy
java位操作数据结构
位操作(BitwiseOperation)是一种直接对整数的二进制位进行操作的计算方法。在计算机中,数据通常以二进制形式存储,位操作允许我们直接操作这些二进制位。位操作通常比常规的算术运算更高效,因为它们直接作用于二进制位而不涉及更复杂的计算。常见的位操作符1.按位与(&):对应位都为1时,结果为1,否则为0。例如:1010&1100=10002.按位或(|):只要对应位有一个为1,结果就为1。例
- crc循环冗余校验码c语言,CRC循环冗余校验码的生成
子绘绘
crc循环冗余校验码c语言
众所周知,不可能有永远都不会出错的人,同样也不可能有永远不出错的计算机,永远不出错的数据。人有知错能改的觉悟,计算机也有,不过计算机没有人类聪明,只能通过一个特定的方法进行自我改正,这就是校验码存在的必要了。一般用得比较多的校验码有奇偶校验码,CRC循环冗余校验码,海明校验码等。这里只介绍用的最多的CRC循环冗余校验码。何为校验码校验码是通过一种计算方法,发出端在原始数据的尾部添加若干数据;然后接
- TCP为什么是可靠的传输
healing97
网络
TCP为什么是可靠的传输(1)检验和TCP检验和的计算与UDP一样,在计算时要加上12byte的伪首部,检验范围包括TCP首部及数据部分,但是UDP的检验和字段为可选的,而TCP中是必须有的。计算方法为:在发送方将整个报文段分为多个16位的段,然后将所有段进行反码相加,将结果存放在检验和字段中,接收方用相同的方法进行计算,如最终结果为检验字段所有位是全1则正确(UDP中为0是正确),否则存在错误。
- 机器学习系列12:反向传播算法
SuperFengCode
机器学习系列机器学习神经网络反向传播算法梯度检验机器学习笔记
当我们要运用高级算法进行梯度下降时,需要计算两个值,代价函数和代价函数的偏导数:代价函数我们之前已经知道怎么求了,现在只需要求代价函数的偏导数即可。采用如下方法,先进行前向传播算法,然后再进行反向传播算法(BackpropagationAlgorithm),反向传播算法与前向传播算法方向相反,它用来求代价函数的偏导数。具体过程看下图:用δ作为误差,计算方法为:有时我们在运用反向传播算法时会遇到bu
- 中国各地级市的海拔标准差
小王毕业啦
大数据算法大数据人工智能社科数据
海拔标准差是衡量地理测量准确性的重要指标,它通过计算特定地点的海拔测量值与平均海拔之间的偏差来评估数据的可靠性。较小的标准差意味着测量结果较为一致,而较大的标准差则可能指出数据的波动性或测量误差。计算方法海拔标准差的计算遵循以下公式:\text{标准差}=\sqrt{\frac{1}{N}\sum(\text{海拔数据}-\text{平均海拔})^2}标准差=N1∑(海拔数据−平均海拔)2其中:N
- 东南大学研究生-数值分析上机题(2023)Python 3 线性代数方程组数值解法
天空的蓝耀
python线性代数
列主元Gauss消去法3.1题目对于某电路的分析,归结为就求解线性方程组RI=V\pmb{RI=V}RI=V,其中R=[31−13000−10000−1335−90−1100000−931−100000000−1079−30000−9000−3057−70−500000−747−300000000−3041000000−50027−2000−9000−229]\pmb{R}=\begin{bmat
- 基于示例详细讲解模型PTQ量化的步骤(含代码)
LQS2020
卷积神经网络python
详细探讨模型PTQ量化每个步骤,涉及更多的技术细节和实际计算方法,以便更好地理解PTQ(Post-TrainingQuantization,训练后量化)的全过程。1.模型训练我们假设已经训练了一个卷积神经网络(CNN),例如VGG-16。训练完成后,我们得到了一个以32位浮点数表示的模型权重和激活值。2.收集统计信息在量化之前,我们需要从模型中收集统计信息,以帮助确定量化的参数。收集权重和激活的统
- 盒子滤波(BOX FILTER)方框滤波学习笔记
Hilary煜
学习笔记matlab数据结构
功能:在给定的滑动窗口大小下,对每个窗口内的像素值进行快速相加求和。应用:图像的局部矩形内像素的和、平方和、均值、方差等特征也可以用类似Haar特征的计算方法来计算Haar特征是一种用于物体识别的数字图像特征,特别是在人脸检测领域中得到了广泛应用。Haar特征得名于其与原始的Haar小波变换在计算方式上的相似性。这种特征通过计算图像中相邻矩形区域的像素强度差来捕捉图像的某些特性,如边缘、线条和中心
- SLAM中常用的库
wq_151
人工智能SLAM计算机视觉人工智能机器学习slam
SLAM中常用的库关于库关于库Pangolin是一个用于OpenGL显示/交互以及视频输入的一个轻量级、快速开发库,下面是Pangolin的Github网址:githubEigen是一个高层次的C++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。pagenanoflann是一个c++11标准库,用于构建具有不同拓扑(R2,R3(点云),SO(2)和SO(3)(2D和3D旋转组))的
- EXCEL 十进制角度转换为度分秒格式
happybubbles
excel算法
写篇比较简单的文章,大家都不屑一顾的问题,但希望有人能够用上。最近同事用到使用EXCEL将十进制角度转度分秒,找我帮忙,网上搜罗一下,大多是度分秒转为十进制的计算方法,偶有这种算法,还要判断度的位数,如30°一个算法,130°又一个算法。且精度只能精确到秒的个位,对于测量坐标转换来说,远远不够。几经演算,反过来在同事的帮助下,写了一个通用的计算公式,可以精确得计算出结果,如下:fx=TEXT(IN
- 高数知识补充----矩阵、行列式、数学符号
chxin14016
笔记高数算法线性代数
矩阵计算参考链接:矩阵如何运算?——线性代数_矩阵计算-CSDN博客矩阵计算:【前找行,后找列,相乘相加】。行列式计算参考链接:实用的行列式计算方法——线性代数(det)_det线性代数-CSDN博客参考链接:行列式的计算方法(含四种,看完就会!)-CSDN博客一、对角线法▍以三阶行列式为例:①将第一、二列平移到行列式右侧②如图做出六条斜对角线③对角线上的元素相乘,红色相加的和减去蓝色相加的和D3
- 家里如何选购空调?购买空调需要注意哪些方面?
高省APP
一,家用空调怎样选1,选择匹数,卧室通常用挂机,挂机的型号有一匹的,也就是26的型号,1.5匹和大1.5匹的也就我们通常说的32和35。2,怎样挑选匹数,这还要看房间面积大小和房子的朝向,例如;西晒,层高,顶层和自建房等,这都和选择匹数有很大关系,3,选择匹数其实也不用那么神秘,也不用复杂公式,说的简单易懂,也方便理解,那就用房间面积乘以2的计算方法,例如:房间面积13平方米乘2就买26的,也就是
- 【Unity3D与23种设计模式】策略模式(Strategy)
林尧彬
设计模式游戏
GoF中定义:“定义一组算法,并封装每个算法,让它们之间可以彼此交换使用。策略模式让这些算法在客户端使用它们时能更加独立。”游戏开发过程中不同的角色会有不同的属性计算方法初级解决方法便是:ifelse,不够再来几个ifelse高级点儿的就用switchcase配合enum对于小型项目或者快速开发验证用的项目而言,这么做是没问题的但是开发规模或产品化项目时,最好还是选择策略模式在策略模式中,算法中的
- echarts瀑布图_一种基于阶梯瀑布图的数据计算方法与流程
孤独凤凰战士
echarts瀑布图
本发明涉及数据分析技术领域,具体地说是一种基于阶梯瀑布图的数据计算方法。背景技术:Echarts是一个纯Javascript的图表库,可以流畅的运行在PC和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Firefox,Safari等),底层依赖轻量级的Canvas类库ZRender,提供直观,生动,可交互,可高度个性化定制的数据可视化图表。ECharts提供了常规的折线
- 什么是C125阶段弱于大盘选股指标?
股票
C125阶段弱于大盘选股指标是一种常用的股票选股指标,它的计算方法如下:C125选股指标的公式:C125=(现阶段股价-上一个交易日收盘价)/上一个交易日收盘价*100其中,C125表示当前阶段的选股指标,上一个交易日收盘价是指前一个交易日的收盘价,现阶段股价是指当前交易日的收盘价。计算出C125指标后,如果该指标的值大于0,则表示当前股票的走势比大盘表现更好;如果该指标的值小于0,则表示当前股票
- 【机器学习】初学者经典案例(随记)
听忆.
机器学习人工智能数据挖掘深度学习语言模型
边走、边悟迟早会好一、概念机器学习是一种利用数据来改进模型性能的计算方法,属于人工智能的一个分支。它旨在让计算机系统通过经验自动改进,而不需要明确编程。类型监督学习:使用带标签的数据进行训练,包括分类(如垃圾邮件检测)和回归(如房价预测)。无监督学习:使用不带标签的数据进行训练,包括聚类(如客户细分)和降维(如主成分分析)。强化学习:通过与环境的交互学习策略,以最大化累积奖励(如AlphaGo)。
- ADL腾落指标——Σ(上涨家数-下跌家数)
浮云花心
ADL指标中文名:ADL指标计算方法:Σ(上涨家数-下跌家数)领域:股市反应:股市大势的走向与趋势计算公式腾落指标(ADL)=Σ(上涨家数-下跌家数)计算原理ADL指标是以股票每天上涨和下跌的家数作为计算和观察的对象,借此了解股市的人气的兴衰,探测大势内在的动量是强势还是弱势,从而研判股市未来动向的技术指标。它是将在该市场上上市交易的所有股票家数中,每日上涨的股票家数减去下跌股票家数所得到的余额的
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement