这里说的 Keras 指的是 tf.keras。
实际上 Keras 是高层的 wrapper。
使用的 keras 主要是用其五个功能。
事实上此 API 没有方便很多,可以自己实现
记录 loss 与 accuracy ,做平均。 功能为 metrics。
使用步骤:
acc_meter = metrics.Accuracy()
loss_meter = metrics.Mean()
acc_meter.update_state(y, pred)
loss_meter.update_state(loss)
acc_meter.result().numpy()
loss_meter.result().numpy()
acc_meter.reset_states()
loss_meter.reset_states()
import tensorflow as tf
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
def preprocess(x, y):
x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x, y
batchsz = 128
(x, y), (x_val, y_val) = datasets.mnist.load_data()
print('datasets:', x.shape, y.shape, x.min(), x.max())
db = tf.data.Dataset.from_tensor_slices((x, y))
db = db.map(preprocess).shuffle(60000).batch(batchsz).repeat(10)
ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val))
ds_val = ds_val.map(preprocess).batch(batchsz)
network = Sequential([layers.Dense(256, activation='relu'),
layers.Dense(128, activation='relu'),
layers.Dense(64, activation='relu'),
layers.Dense(32, activation='relu'),
layers.Dense(10)])
network.build(input_shape=(None, 28 * 28))
network.summary()
optimizer = optimizers.Adam(lr=0.01)
acc_meter = metrics.Accuracy()
loss_meter = metrics.Mean()
for step, (x, y) in enumerate(db):
with tf.GradientTape() as tape:
# [b, 28, 28] => [b, 784]
x = tf.reshape(x, (-1, 28 * 28))
# [b, 784] => [b, 10]
out = network(x)
# [b] => [b, 10]
y_onehot = tf.one_hot(y, depth=10)
# [b]
loss = tf.reduce_mean(
tf.losses.categorical_crossentropy(
y_onehot, out, from_logits=True))
loss_meter.update_state(loss)
grads = tape.gradient(loss, network.trainable_variables)
optimizer.apply_gradients(zip(grads, network.trainable_variables))
if step % 100 == 0:
print(step, 'loss:', loss_meter.result().numpy())
loss_meter.reset_states()
# evaluate
if step % 500 == 0:
total, total_correct = 0., 0
acc_meter.reset_states()
for step, (x, y) in enumerate(ds_val):
# [b, 28, 28] => [b, 784]
x = tf.reshape(x, (-1, 28 * 28))
# [b, 784] => [b, 10]
out = network(x)
# [b, 10] => [b]
pred = tf.argmax(out, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
# bool type
correct = tf.equal(pred, y)
# bool tensor => int tensor => numpy
total_correct += tf.reduce_sum(tf.cast(correct,
dtype=tf.int32)).numpy()
total += x.shape[0]
acc_meter.update_state(y, pred)
print(
step,
'Evaluate Acc:',
total_correct / total,
acc_meter.result().numpy())
快捷训练方法
过程:
network.compile(optimizer=optimizers.Adam(lr=0.01), # optimizer
loss=tf.losses.CategoricalCrossentropy(from_logits=True), # loss
metrics=['accuracy'] # test
)
network.fit(db, epochs=5, validation_data=ds_val, validation_freq=2)
network.evaluate(ds_val)
sample = next(iter(ds_val))
x = sample[0]
y = sample[1] # one-hot
pred = network.predict(x) # [b, 10]
# convert back to number
y = tf.argmax(y, axis=1)
pred = tf.argmax(pred, axis=1)
print(pred)
print(y)
import tensorflow as tf
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
def preprocess(x, y):
"""
x is a simple image, not a batch
"""
x = tf.cast(x, dtype=tf.float32) / 255.
x = tf.reshape(x, [28 * 28])
y = tf.cast(y, dtype=tf.int32)
y = tf.one_hot(y, depth=10)
return x, y
batchsz = 128
(x, y), (x_val, y_val) = datasets.mnist.load_data()
print('datasets:', x.shape, y.shape, x.min(), x.max())
db = tf.data.Dataset.from_tensor_slices((x, y))
db = db.map(preprocess).shuffle(60000).batch(batchsz)
ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val))
ds_val = ds_val.map(preprocess).batch(batchsz)
sample = next(iter(db))
print(sample[0].shape, sample[1].shape)
network = Sequential([layers.Dense(256, activation='relu'),
layers.Dense(128, activation='relu'),
layers.Dense(64, activation='relu'),
layers.Dense(32, activation='relu'),
layers.Dense(10)])
network.build(input_shape=(None, 28 * 28))
network.summary()
network.compile(optimizer=optimizers.Adam(lr=0.01),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy'] # test
)
network.fit(db, epochs=10, validation_data=ds_val, validation_freq=2)
network.evaluate(ds_val)
sample = next(iter(ds_val))
x = sample[0]
y = sample[1] # one-hot
pred = network.predict(x) # [b, 10]
# convert back to number
y = tf.argmax(y, axis=1)
pred = tf.argmax(pred, axis=1)
print(pred)
print(y)