PyTorch官方教程 - Getting Started - 60分钟快速入门 - 神经网络

NEURAL NETWORKS

PyTorch官方教程 - Getting Started - 60分钟快速入门 - 神经网络_第1张图片

每个nn.Module需包含网络结构和forward(input)方法。

forward(input)方法返回输出

训练神经网络一般步骤:

  • 定义神经网络、可学习参数(权值)
  • 遍历输入数据集
  • 前向传播
  • 计算损失(输出与真实值距离)
  • 反向传播梯度
  • 更新网络权值, w e i g h t = w e i g h t − l e a r n i n g _ r a t e ∗ g r a d i e n t weight = weight - learning\_rate * gradient weight=weightlearning_rategradient
import torch
import torch.nn as nn
import torch.nn.functional as F

定义网络

class Net(nn.Module):
    
    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 3x3 square convolution kernel
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=3)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=3)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(in_features=16 * 6 * 6, out_features=120)  # 6*6 from image dimension
        self.fc2 = nn.Linear(in_features=120, out_features=84)
        self.fc3 = nn.Linear(in_features=84, out_features=10)
        
    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(input=F.relu(input=self.conv1(x)), kernel_size=(2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(input=F.relu(input=self.conv2(x)), kernel_size=2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(input=self.fc1(x))
        x = F.relu(input=self.fc2(x))
        x = self.fc3(x)
        
        return x
    
    def num_flat_features(self, x):
        size = x.size()[1 :]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
            
        return num_features
    
    
        
net = Net()
print(net)
Net(
  (conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))
  (fc1): Linear(in_features=576, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

模型的可学习参数由net.parameters()返回

params = list(net.parameters())
print(len(params))
print(params[0].size())  # conv1's .weight
10
torch.Size([6, 1, 3, 3])

随机输入

input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
tensor([[-0.0848, -0.0075,  0.0200,  0.0464,  0.0374,  0.0861,  0.0148,  0.0441,
          0.0547, -0.0514]], grad_fn=)

所有参数梯度缓存清零,随机梯度反向传播

net.zero_grad()
out.backward(torch.randn(1, 10))

torch.nn仅支持mini-batches,对于单个样本,用input.unsqueeze(0)增加batch维度

  • torch.Tensor:一个多维数组、支持autograd运算,如backward(),并保存对张量的梯度。
  • nn.Module:神经网络模块,封装参数、协助GPU运算、导出、加载等。
  • nn.Parameter:参数张量,作为属性分配给模块时,自动注册为参数。
  • autograd.Function:自动求导运算的正、反向定义。

损失函数

损失函数输入:(output, target),计算output与target间的距离。

output = net(input)
target = torch.randn(10)  # a dummy target, for example
target - target.view(1, -1)  # make it the same shape as output
criterion = nn.MSELoss()

loss = criterion(output, target)
print(loss)
tensor(0.6538, grad_fn=)
print(loss.grad_fn)  # MSELoss
print(loss.grad_fn.next_functions[0][0])  # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0])  # ReLU



反向传播(Backprop)

loss.backward()

需要先将梯度清零,否则梯度将会累加。

net.zero_grad()     # zeroes the gradient buffers of all parameters

print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)

loss.backward()

print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([-0.0038, -0.0011, -0.0077, -0.0036, -0.0100, -0.0093])

更新权值

随机梯度下降(Stochastic Gradient Descent,SGD)

weight = weight - learning_rate * gradient

learning_rate = 0.01
for f in net.parameters():
    f.data.sub_(f.grad.data * learning_rate)

torch.optim

import torch.optim as optim

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop
optimizer.zero_grad()   # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()    # Does the update
D:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\loss.py:443: UserWarning: Using a target size (torch.Size([10])) that is different to the input size (torch.Size([1, 10])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.
  return F.mse_loss(input, target, reduction=self.reduction)

你可能感兴趣的:(PyTorch官方教程)