- Python科学计算实战:数学建模与数值分析应用
数据小爬虫
api电商api数学建模python开发语言pygame前端facebook数据库
Python在科学计算和数学建模方面有着广泛的应用。以下是一个简单的例子,使用Python进行数学建模和数值分析。这个例子将演示如何使用Python来求解一元二次方程。1.一元二次方程一元二次方程是一个形如(ax^2+bx+c=0)的方程,其中(a\neq0)。2.求解方法求解一元二次方程,我们通常使用公式:[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}]3.Python实现i
- Python求解微分方程
@星辰大海@
python开发语言
一、引言微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。微分方程种类很多,具体分类可参考以下博主的文章:https://blog.csdn.net/air_729/article/details/139411996微分方程的解又分成通解和特解,在工程中大多数微分方程是很难得到通解的,因此出现了数值分析或者计算方法这门学科,通过一次次迭代得到方程的某一个或某几个特解,本文
- 数值分析——LU分解(LU Factorization)
怀帝阍而不见
计算数学c++
本系列整理自博主21年秋季学期本科课程数值分析I的编程作业,内容相对基础,参考书:DavidKincaid,WardCheney-NumericalAnalysisMathematicsofScientificComputing(2002,AmericalMathematicalSociety)目录背景LU分解(LU-Factorization)辅助部分Doolittle分解Cholesky分解定
- 东南大学研究生-数值分析上机题(2023)Python 3 线性代数方程组数值解法
天空的蓝耀
python线性代数
列主元Gauss消去法3.1题目对于某电路的分析,归结为就求解线性方程组RI=V\pmb{RI=V}RI=V,其中R=[31−13000−10000−1335−90−1100000−931−100000000−1079−30000−9000−3057−70−500000−747−300000000−3041000000−50027−2000−9000−229]\pmb{R}=\begin{bmat
- SLAM中常用的库
wq_151
人工智能SLAM计算机视觉人工智能机器学习slam
SLAM中常用的库关于库关于库Pangolin是一个用于OpenGL显示/交互以及视频输入的一个轻量级、快速开发库,下面是Pangolin的Github网址:githubEigen是一个高层次的C++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。pagenanoflann是一个c++11标准库,用于构建具有不同拓扑(R2,R3(点云),SO(2)和SO(3)(2D和3D旋转组))的
- 机器学习先导课《数值分析》(1)——绪论及误差分析
WarrenRyan
数值分析——绪论及误差分析数值分析——绪论及误差分析全文目录数值分析的作用及其学习工具使用数值分析常用工具数值分析的具体实例(多项式简化求值)计算机数值误差产生机理计算机的数值存储方式计算机误差产生原因误差误差限与精度模型误差观测误差截断误差舍入误差有效数字缺失误差的产生和避免误差的传播算法设计的稳定性与病态条件病态问题计算的稳定性练习题ReferenceAboutMe联系方式全文目录(博客园)机
- python数值分析
寂静丿夏夜
python数据分析numpy
python数值分析上学期上数值分析课的时候被老师要求用python写代码,最后代码加上实验报告,写了一天终于给整完了。为了让大家不在这么煎熬秃顶,我就把我之前写的代码整理一下分享给大家。python二分法解决方程:x^3±2*x-5、、、defsolve_function(x):returnx**3-2*x-5defdichotomy(left,right,eps):mid=(left+righ
- 二次和三次样条曲线的作用,生成二次和三次样条曲线的方法
kfjh
算法
为什么二次样条曲线在插值和逼近中有重要作用二次样条曲线在插值和逼近中有重要作用,主要原因如下:二次样条插值具有一些重要的性质和应用价值。例如,它能够保证拟合曲线不仅通过所有给定的数据点,而且在每段曲线连接处一阶导数相等,从而使得拟合曲线相对平滑。每段曲线是二次曲线。为什么三次样条曲线在插值和逼近中有重要作用三次样条曲线在插值和逼近中有重要作用,主要原因如下:首先,三次样条插值是一种常用的数值分析方
- 2019-10-04 学习极大似然估计与优化理论
小郑的学习笔记
主要推导了一个公式推导MLE与LSE.jpeg即用极大似然估计(MLE)的角度去解多元线性回归其结果与最小二乘(LSE)解的结果是一样的,这一点我觉得很神奇。可以看这个解释例子https://www.cnblogs.com/little-YTMM/p/5700226.html2。学习数值分析,学习了两种优化,无约束最优化和有约束最优化。无约束最优化主要有梯度下降法牛顿法梯度下降法在接近极值的时候会
- 北航数值分析作业三
weixin_34214500
c/c++ui数据结构与算法
frommathimport*t_table=[0,0.2,0.4,0.6,0.8,1.0]th=0.2u_table=[0,0.4,0.8,1.2,1.6,2]uh=0.4z_table=[[-0.5,-0.34,0.14,0.94,2.06,3.5],[-0.42,-0.5,-0.26,0.3,1.18,2.38],[-0.18,-0.5,-0.5,-0.18,0.46,1.42],[0.22
- 数值分析大作业c语言版,数值分析大作业3
黄之昊
数值分析大作业c语言版
该楼层疑似违规已被系统折叠隐藏此楼查看此楼数值分析大作业3一、设计方案1.使用牛顿迭代法,对原题中给出的,,()的11*21组分别求出原题中方程组的一组解,于是得到一组和对应的。2.对于已求出的,使用分片二次代数插值法对原题中关于的数表进行插值得到。于是产生了z=f(x,y)的11*21个数值解。3.从k=1开始逐渐增大k的值,并使用最小二乘法曲面拟合法对z=f(x,y)进行拟合,得到每次的。当时
- 今日小结
夜景_Y
明天有门数值分析考试,这几天一直在刷题库,刷的遍数不算多,题型也大致看了一遍。仍是有许多不会。内心很慌,但是因为今天写的很多,晚上应该歇歇脑子了。刚有室友给我分享的一套题,还没来得及看。大致看了一眼,有我没见过的题,希望明天考试顺利。图片发自App
- LeetCode刷题记——69. x 的平方根(牛顿迭代法)
JimmyGreen
题目描述:实现intsqrt(intx)函数。计算并返回x的平方根,其中x是非负整数。由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。示例1:输入:4输出:2示例2:输入:8输出:2说明:8的平方根是2.82842...,由于返回类型是整数,小数部分将被舍去。一想到平方根,我第一时间想到用2分法的方法去计算,用一个while循环来控制终止条件。但是突然想到在数值分析中学到的牛顿迭代法,
- ODE45——求解状态变量(微分方程组)
Y. F. Zhang
控制系统仿真与CAD
ode45函数ode45实际上是数值分析中数值求解微分方程组的一种方法,4阶五级Runge-Kutta算法。调用方法[t,x]=ode45(Fun,tspan,x0,options,pars)[t,x]=ode45(Fun,tspan,x_0,options,pars)[t,x]=ode45(Fun,tspan,x0,options,pars)其实这种方程的每一个状态变量都是t的函数,我们可以从现
- 有限元编程经典教材推荐
suoge223
有限元编程从入门到精通matlabpythonc++c语言githubvisualstudiocode制造
有限元方法是工程学和科学计算领域中广泛应用的数值分析技术。有关有限元编程的教材通常覆盖了理论、数值方法和实际编程技能。以下是10本关于有限元编程的教材,每本书都具有其独特的优势,并为读者提供了深入理解和实践有限元方法的机会。需要的小伙伴可以私信我~1.《AFirstCourseintheFiniteElementMethod》byDarylL.Logan-理由:这本书是有限元方法领域的经典之作,适
- Python---Pycharm安装各种库(第三方库)
程序员老冉
pythonpycharm开发语言青少年编程汇编程序人生
一、前言Pycharm中,通常需要安装很多第三方库,才可以使用相应的拓展功能,这篇文档给你介绍Pycharm中的常用库,以及安装的两种方法!二、Pycharm常用库的介绍Pycharm是一款非常流行的Python集成开发环境(IDE),支持多种Python库和框架。以下是一些常用的Python库:NumPy:用于科学计算和数值分析的Python库。Pandas:用于数据分析和数据预处理的Pytho
- [NA]Lab2:求多项式函数的零点
ZJU_TEDA
数值分析数值分析
任务概述数值分析课程的第二个实验,计算一个多项式函数在给定区间[a,b]上的零点。多项式函数形如:p(x)=cnxn+cn−1xn−1+...c1x+c0裁判数据保证在给定区间内存在唯一的实数根。函数接口定义doublePolynomial_Root(intn,doublec[],doublea,doubleb,doubleEPS);其中n表示多项式的阶数,c为传入多项式的系数,a和b分别为区间的
- [计算机数值分析]牛顿法求解方程的根
Spring-_-Bear
武理四年c++数值分析牛顿迭代法迭代求方程根
Spring-_-Bear的CSDN博客导航对于方程f(x)=0f(x)=0f(x)=0设已知它的近似根xkx_{k}xk,则函数f(x)f(x)f(x)在点xkx_{k}xk附近可用一阶泰勒多项式p(x)=f(xk)+f′(xk)(x−xk)p(x)=f(x_{k})+f'(x_{k})(x-x_{k})p(x)=f(xk)+f′(xk)(x−xk)来近似,因此方程f(x)=0f(x)=0f(x
- 我们究竟读了一个什么样的大学?
田洲
在大学里,我们表面上在学习,但是根本不知道学了些什么,学了怎么用,为什么而学。我感觉现在三四流大学的教育跟现实是脱节的,很落后,学校的培养方案变了又变,可能他也不知道自己想要培养什么样的学生。像我们这样的大学,不注重学生找什么样的工作,反而格外注意研究生升学率,是不是有点本末倒置了呢?把所有的东西都寄希望于未来,那我现在在干嘛,要你这个本科是干嘛?研究生有一门公共课叫数值分析,而我们大二就学过了,
- 我的最大收获与成长
civilpy
python
经历Iamnotadesignernoracoder.I'mjustaguywithapoint-of-viewandacomputer.翻译:俺不是码畜,俺只是一条对着电脑有点想法的土木狗。笔者1982年出生,西南交通大学渣硕,目前仍在土木行业(PS:年纪大,跳不动)。2001-2005年,本科阶段学的C艹,60几分飘过。2005-2008年,研究生阶段用Ansys、Flac3D做数值分析。20
- Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍
孤舟簔笠翁
Android应用进阶篇android矩阵算法
一,矩阵Matrix的数学原理矩阵的数学原理涉及到矩阵的运算和变换,是高等代数学中的重要概念。在图形变换中,矩阵起到关键作用,通过矩阵的变换可以改变图形的位置、形状和大小。矩阵的运算是数值分析领域的重要问题,对矩阵进行分解和简化可以简化计算过程。对于一些特殊矩阵,如稀疏矩阵和准对角矩阵,有特定的快速运算算法。在MatrixMatrix中,矩阵的数学原理同样适用。Matrix提供了缩放、平移、旋转和
- 无法从字符串单元格获取数值:Cannot get a NUMERIC value from a STRING cell
兰觅
说明:从excel中上传数据,报如下错CannotgetaNUMERICvaluefromaSTRINGcell:无法从字符串单元格获取数值分析如下:excel单元格类型为string类型的,获取值时写的数值类型如图所示解决方式如下:1.先获取单元格string类型的数据2.然后转换为double类型图示
- Numpy使用简介
ZShiJ
数据挖掘Pythonnumpy
Numpy相关题目【Python】——Numpy初体验【Python】——NumPy基础及取值操作Numpy是基于Python的通用数值计算工具包,其内包含大量数学计算函数和矩阵运算函数。多数科学计算工具包,比如Scipy,和数值分析工具包,比如Pandas、Scikit-learn,都依赖Numpy。利用Numpy,能够高效地对一维数组、矩阵或更高维度的多维数组进行运算,性能比使用Python列
- MATLAB介绍
人间造梦工厂
MATLABMATLAB
MATLAB是MATrixLABoratory即矩阵实验室的缩写,是由美国MathWorks公司开发的专业工程与科学计算软件,是一个集科学计算、数值分析、矩阵计算、数据可视化及交互式程序设计于一体的计算环境,形成一个易于使用的视窗环境。MATLAB执行由MATLAB语言编写的程序,同时提供丰富的预定义函数库,可以简化编程过程,提高编程效率。MATLAB有很多自带的功能强大的工具,如:各类工具箱编辑
- 【数值分析】最小二乘,最佳一致逼近
你哥同学
数值分析matlab最小二乘最佳一致逼近
最小二乘用于不知道f(x){f(x)}f(x)的时候,[a,b]{[a,b]}[a,b]只有一堆点。x1∣x2∣x3∣⋯∣xn∣−−−−−−−−−−f(x1)∣f(x2)∣f(x3)∣⋯∣f(xn)∣\begin{array}{cccccc}x_1&|&x_2&|&x_3&|&\cdots&|&x_n&|\\-&-&-&-&-&-&-&-&-&-\\f(x_1)&|&f(x_2)&|&f(x_3)
- 【数值分析】数值微分
你哥同学
数值分析matlab数值微分
1.基于Taylor公式的数值微分公式f′(x)≈f(x+h)−f(x)h , 截断误差 −f′′(ξ)2hf'(x)\approx\frac{f(x+h)-f(x)}{h}\,\,,\,\,截断误差\,\,\,-\frac{f''(\xi)}{2}hf′(x)≈hf(x+h)−f(x),截断误差−2f′′(ξ)hf′(x)≈f(x)−f(x−h)h , 截断误差 −f′′(ξ)2
- 【数值分析】区间折半法,matlab实现
你哥同学
数值分析matlab区间折半法数值分析
区间折半法从梯形公式出发,上一步步长为h{h}h,则有步长折半后的积分T2n=12Tn+h2∑i=0n−1f(xi+0.5)T_{2n}=\frac{1}{2}T_n+\frac{h}{2}\sum_{i=0}^{n-1}f(x_{i+0.5})T2n=21Tn+2hi=0∑n−1f(xi+0.5)matlab实现%%区间折半法例子formatlong[Ii]=halfStep(@f,0,1,1e
- 【数值分析】最佳平方逼近,最佳逼近
你哥同学
数值分析数值分析最佳逼近
最佳平方逼近∑k=0nWk(f(xk)−ϕ(xk))2=min\sum_{k=0}^{n}W_k(f(x_k)-\phi(x_k))^2=\mink=0∑nWk(f(xk)−ϕ(xk))2=min→节点非常多时∫abρ(x)(f(x)−ϕ(x))2dx=min\xrightarrow[]{\text{节点非常多时}}\int_a^b\rho(x)(f(x)-\phi(x))^2\mathrmd
- 【数值分析】逼近,正交多项式
你哥同学
数值分析线性代数数值分析逼近
逼近由离散点(函数表)给出函数关系通常有两种方法:使用多项式插值使用多项式插值会带来两个问题:1.龙格现象2.数值本身带有误差,使用插值条件来确定函数关系不合理三次样条插值三次样条插值克服了龙格现象,但计算量大。曲线拟合的最小二乘法可以克服龙格现象,同时不会有大计算量。用函数序列pn(x){p_n(x)}pn(x)去近似一个函数f(x){f(x)}f(x),称为逼近。用函数Φ{\Phi}Φ去近似一
- Anaconda下载安装与使用
ZShiJ
Python数据挖掘pythonjupyteranaconda
前言Pandas之所以被称为工具包,原因是Pandas这个工具是由不同的代码模块组成的。每一个代码模块的功能不同,合在一起构成Pandas的丰富功能。其他工具包亦然。名称描述NumpyNumpy是通用的数值计算工具包,包含大量数学计算函数和矩阵运算函数。多数科学计算工具包和数值分析工具包依赖Numpy。PandasPandas是基于Numpy构建的、开源的Python数据分析工具包,依赖高效的数据
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_