在上一篇博客中,我使用AQS实现了一把自定义锁,这样可以使我们更好的理解基于AQS的锁体系
使用Java的AQS组件自定义一把锁
也可以更好得理解本文中的一些关键词
先从构造器开始看,默认为非公平锁实现
public ReentrantLock() {
sync = new NonfairSync();
}
NonfairSync
继承自 AQS(同步器),它长这个样子
在本文第一段引用的文章末尾,我介绍了AQS的阻塞队列相关,里面对这把同步器里的几个元素作了解释,各位可自行查看
在有一个线程持有这把锁时,它长这个样子:
第一个竞争出现时:
public void lock() {
sync.lock();
}
**************************************************************************
final void lock() {
// 首先用 cas 尝试(仅尝试一次)将 state 从 0 改为 1, 如果成功表示获得了独占锁
if (compareAndSetState(0, 1)) //0——>1
setExclusiveOwnerThread(Thread.currentThread());
else
// 如果尝试失败,进入阻塞队列等待唤醒
acquire(1);
}
**************************************************************************
// ㈠ AQS 继承过来的方法
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
// 当 tryAcquire 返回为 false 时, 先调用 addWaiter , 接着 acquireQueued
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
**************************************************************************
线程2执行了:
CAS 尝试将 state 由 0 改为 1,结果失败
进入 tryAcquire 逻辑,这时 state 已经是1,结果仍然失败
接下来进入 addWaiter 逻辑,构造 Node 队列
private Node addWaiter(Node mode) {
// 将当前线程关联到一个 Node 对象上, 模式为独占模式
Node node = new Node(Thread.currentThread(), mode);
// 如果 tail 不为 null, cas 尝试将 Node 对象加入 AQS 队列尾部
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
// 双向链表
pred.next = node;
return node;
}
}
// 尝试将 Node 加入 AQS
enq(node);
return node;
}
**************************************************************************
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) {
// 还没有, 设置 head 为哨兵节点(不对应线程,状态为 0)
if (compareAndSetHead(new Node())) {
tail = head;
}
} else {
// cas 尝试将 Node 对象加入 AQS 队列尾部
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}} }}
完成后,形成了这样一个数据结构,曰之双端ELC阻塞队列
图中黄色三角表示该 Node 的 waitStatus 状态,其中 0 为默认正常状态
Node 的创建是懒惰的
其中第一个 Node 称为 Dummy(哑元)或哨兵,用来占位,并不关联线程,主要作用是唤醒与之关联的线程
当前线程进入 acquireQueued 逻辑
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
//死循环
for (;;) {
//获得当前线程前驱节点:head
final Node p = node.predecessor();
// 上一个节点是 head, 表示轮到自己(当前线程对应的 node)了, 尝试获取
if (p == head && tryAcquire(arg)) {
// 获取成功, 设置自己(当前线程对应的 node)为 head
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
//锁被另一个线程占有,失败
if (shouldParkAfterFailedAcquire(p, node) &&
//park并检查是否被打断,是则设置打断标记, 此时 Node 的状态被置为 Node.SIGNAL
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
//放弃申请锁
cancelAcquire(node);
}
}
**************************************************************************
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
// 获取上一个节点的状态
int ws = pred.waitStatus;
if (ws == Node.SIGNAL) {
// 上一个节点都在阻塞, 那么自己也阻塞好了
return true;
}
// > 0 表示取消状态
if (ws > 0) {
// 上一个节点取消, 那么重构删除前面所有取消的节点, 返回到外层循环重试
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
// 这次还没有阻塞
// 但下次如果重试不成功, 则需要阻塞,这时需要设置上一个节点状态为 Node.SIGNAL
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
**************************************************************************
// 阻塞当前线程
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
}
acquireQueued
会在一个死循环中不断尝试获得锁,失败后进入 park 阻塞
如果自己是紧邻着 head(排第二位),那么再次 tryAcquire
尝试获取锁,当然这时 state 仍为 1,失败
进入 shouldParkAfterFailedAcquire
逻辑,将前驱 node,即 head 的 waitStatus 改为 -1,这次返回 false
当再次有多个线程经历上述过程竞争失败,变成这个样子:
线程1释放锁,进入 tryRelease 流程,如果成功
设置 exclusiveOwnerThread 为 null
state = 0
public final boolean release(int arg) {
// 尝试释放锁
if (tryRelease(arg)) {
// 队列头节点 unpark
Node h = head;
if (h != null && h.waitStatus != 0)
// unpark AQS 中等待的线程
unparkSuccessor(h);
return true;
}
return false;
}
**************************************************************************
protected final boolean tryRelease(int releases) {
// state--,重入的线程释放时的releases为重入的次数
int c = getState() - releases; //1-1
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
// 支持锁重入, 只有 state 减为 0, 才释放成功
if (c == 0) {
free = true;
//设置 exclusiveOwnerThread 为 null
setExclusiveOwnerThread(null);
}
//设置锁为正常状态0
setState(c);
return free;
}
此时,阻塞队列不为 null,并且 head 的 waitStatus = -1,进入 unparkSuccessor 流程
private void unparkSuccessor(Node node) {
// 如果状态为 Node.SIGNAL 尝试重置状态为 0
// 不成功也可以
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
//找到哨兵下一个
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
//非空
if (s != null)
//唤醒
LockSupport.unpark(s.thread);
}
回到线程2 的 acquireQueued 流程(死循环睡眠):
for (;;) {
//获取当前线程节点的前驱
final Node p = node.predecessor();
//如果正好排到自己且竞争锁成功
if (p == head && tryAcquire(arg)) {
setHead(node);
**************************************************************************
private void setHead(Node node) {
//head 指向刚刚线程2所在的 Node
head = node;
//node作为哨兵
node.thread = null;
node.prev = null;
}
**************************************************************************
//原本的head从链表断开,而可被垃圾回收
p.next = null; // help GC
failed = false;
return interrupted;
}
如果加锁成功(没有竞争),会设置
exclusiveOwnerThread 为线程2,state = 1
head 指向刚刚线程2所在的 Node
原本的 head 因为从链表断开,而可被垃圾回收
此时,数据结构是这样的:
注意:如果这时候有其它线程来竞争(非公平的体现),在Sync状态设置为0时,其他线程是可以绕过阻塞队列直接占有这把锁的
如果被别的线程“钻了空子”,则
Thread-4 被设置为 exclusiveOwnerThread,state = 1
Thread-1 再次进入 acquireQueued 流程,获取锁失败,重新进入 park 阻塞
可重入锁实现源码注释
static final class NonfairSync extends Sync { // ... // Sync 继承过来的方法, 方便阅读, 放在此处 final boolean nonfairTryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } // 如果已经获得了锁, 线程还是当前线程, 表示发生了锁重入 else if (current == getExclusiveOwnerThread()) { // state++ int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } // Sync 继承过来的方法, 方便阅读, 放在此处 protected final boolean tryRelease(int releases) { // state-- int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; // 支持锁重入, 只有 state 减为 0, 才释放成功 if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); return free; } }
可打断锁实现源码注释
不可打断模式
在此模式下,即使它被打断,仍会驻留在 AQS 队列中,一直要等到获得锁后方能得知自己被打断了
// Sync 继承自 AQS static final class NonfairSync extends Sync { // ... private final boolean parkAndCheckInterrupt() { // 如果打断标记已经是 true, 则 park 会失效 LockSupport.park(this); // interrupted 会清除打断标记 return Thread.interrupted(); } final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; failed = false; // 还是需要获得锁后, 才能返回打断状态 return interrupted; } if ( shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt() ) { // 如果是因为 interrupt 被唤醒, 返回打断状态为 true interrupted = true; } } } finally { if (failed) cancelAcquire(node); } } public final void acquire(int arg) { if ( !tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg) ) { // 如果打断状态为 true selfInterrupt(); } } static void selfInterrupt() { // 重新产生一次中断 Thread.currentThread().interrupt(); } }
可打断模式
static final class NonfairSync extends Sync { public final void acquireInterruptibly(int arg) throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); // 如果没有获得到锁, 进入 ㈠ if (!tryAcquire(arg)) doAcquireInterruptibly(arg); } // ㈠ 可打断的获取锁流程 private void doAcquireInterruptibly(int arg) throws InterruptedException { final Node node = addWaiter(Node.EXCLUSIVE); boolean failed = true; try { for (;;) { final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return; } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) { // 在 park 过程中如果被 interrupt 会进入此 // 这时候抛出异常, 而不会再次进入 for (;;) throw new InterruptedException(); } } } finally { if (failed) cancelAcquire(node); } } }
公平锁实现源码注释
static final class FairSync extends Sync { private static final long serialVersionUID = -3000897897090466540L; final void lock() { acquire(1); } // AQS 继承过来的方法, 方便阅读, 放在此处 public final void acquire(int arg) { if ( !tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg) ) { selfInterrupt(); } } // 与非公平锁主要区别在于 tryAcquire 方法的实现 protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { // 先检查 AQS 队列中是否有前驱节点, 没有才去竞争 if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } // ㈠ AQS 继承过来的方法, 方便阅读, 放在此处 public final boolean hasQueuedPredecessors() { Node t = tail; Node h = head; Node s; // h != t 时表示队列中有 Node return h != t && ( // (s = h.next) == null 表示队列中还有没有老二 (s = h.next) == null || // 或者队列中老二线程不是此线程 s.thread != Thread.currentThread() ); } }
每个条件变量其实就对应着一个等待队列,其实现类是 ConditionObject
开始 Thread-0 持有锁,调用 await,进入 ConditionObject 的 addConditionWaiter 流程
创建新的 Node 状态为 -2(Node.CONDITION),关联 Thread-0,加入等待队列尾部
接下来进入 AQS 的 fullyRelease 流程,释放同步器上的锁
unpark AQS 队列中的下一个节点,竞争锁,假设没有其他竞争线程,那么 Thread-1 竞争成功
park 阻塞 Thread-0
假设 Thread-1 要来唤醒 Thread-0
进入 ConditionObject 的 doSignal 流程,取得等待队列中第一个 Node,即 Thread-0 所在 Node
执行 transferForSignal 流程,将该 Node 加入 AQS 队列尾部,将 Thread-0 的 waitStatus 改为 0,Thread-3 的waitStatus 改为 -1
Thread-1 释放锁,进入 unlock 流程,略
public class ConditionObject implements Condition, java.io.Serializable {
private static final long serialVersionUID = 1173984872572414699L;
// 第一个等待节点
private transient Node firstWaiter;
// 最后一个等待节点
private transient Node lastWaiter;
public ConditionObject() { }
// ㈠ 添加一个 Node 至等待队列
private Node addConditionWaiter() {
Node t = lastWaiter;
// 所有已取消的 Node 从队列链表删除, 见 ㈡
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters();
t = lastWaiter;
}
// 创建一个关联当前线程的新 Node, 添加至队列尾部
Node node = new Node(Thread.currentThread(), Node.CONDITION);
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}
// 唤醒 - 将没取消的第一个节点转移至 AQS 队列
private void doSignal(Node first) {
do {
// 已经是尾节点了
if ( (firstWaiter = first.nextWaiter) == null) {
lastWaiter = null;
}
first.nextWaiter = null;
} while (
// 将等待队列中的 Node 转移至 AQS 队列, 不成功且还有节点则继续循环 ㈢
!transferForSignal(first) &&
// 队列还有节点
(first = firstWaiter) != null
);
}
// 外部类方法, 方便阅读, 放在此处
// ㈢ 如果节点状态是取消, 返回 false 表示转移失败, 否则转移成功
final boolean transferForSignal(Node node) {
// 如果状态已经不是 Node.CONDITION, 说明被取消了
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;
// 加入 AQS 队列尾部
Node p = enq(node);
int ws = p.waitStatus;
if (
// 上一个节点被取消
ws > 0 ||
// 上一个节点不能设置状态为 Node.SIGNAL
!compareAndSetWaitStatus(p, ws, Node.SIGNAL)
) {
// unpark 取消阻塞, 让线程重新同步状态
LockSupport.unpark(node.thread);
}
return true;
}
// 全部唤醒 - 等待队列的所有节点转移至 AQS 队列
private void doSignalAll(Node first) {
lastWaiter = firstWaiter = null;
do {
Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);
first = next;
} while (first != null);
}
// ㈡
private void unlinkCancelledWaiters() {
// ...
}
// 唤醒 - 必须持有锁才能唤醒, 因此 doSignal 内无需考虑加锁
public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first);
}
// 全部唤醒 - 必须持有锁才能唤醒, 因此 doSignalAll 内无需考虑加锁
public final void signalAll() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignalAll(first);
}
// 不可打断等待 - 直到被唤醒
public final void awaitUninterruptibly() {
// 添加一个 Node 至等待队列, 见 ㈠
Node node = addConditionWaiter();
// 释放节点持有的锁, 见 ㈣
int savedState = fullyRelease(node);
boolean interrupted = false;
// 如果该节点还没有转移至 AQS 队列, 阻塞
while (!isOnSyncQueue(node)) {
// park 阻塞
LockSupport.park(this);
// 如果被打断, 仅设置打断状态
if (Thread.interrupted())
interrupted = true;
}
// 唤醒后, 尝试竞争锁, 如果失败进入 AQS 队列
if (acquireQueued(node, savedState) || interrupted)
selfInterrupt();
}
// 外部类方法, 方便阅读, 放在此处
// ㈣ 因为某线程可能重入,需要将 state 全部释放
final int fullyRelease(Node node) {
boolean failed = true;
try {
int savedState = getState();
if (release(savedState)) {
failed = false;
return savedState;
} else {
throw new IllegalMonitorStateException();
}
} finally {
if (failed)
node.waitStatus = Node.CANCELLED;
}
}
// 打断模式 - 在退出等待时重新设置打断状态
private static final int REINTERRUPT = 1;
// 打断模式 - 在退出等待时抛出异常
private static final int THROW_IE = -1;
// 判断打断模式
private int checkInterruptWhileWaiting(Node node) {
return Thread.interrupted() ?
(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
0;
}
// ㈤ 应用打断模式
private void reportInterruptAfterWait(int interruptMode)
throws InterruptedException {
if (interruptMode == THROW_IE)
throw new InterruptedException();
else if (interruptMode == REINTERRUPT)
selfInterrupt();
}
// 等待 - 直到被唤醒或打断
public final void await() throws InterruptedException {
if (Thread.interrupted()) {
throw new InterruptedException();
}
// 添加一个 Node 至等待队列, 见 ㈠
Node node = addConditionWaiter();
// 释放节点持有的锁
int savedState = fullyRelease(node);
int interruptMode = 0;
// 如果该节点还没有转移至 AQS 队列, 阻塞
while (!isOnSyncQueue(node)) {
// park 阻塞
LockSupport.park(this);
// 如果被打断, 退出等待队列
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
// 退出等待队列后, 还需要获得 AQS 队列的锁
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
// 所有已取消的 Node 从队列链表删除, 见 ㈡
if (node.nextWaiter != null)
unlinkCancelledWaiters();
// 应用打断模式, 见 ㈤
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
// 等待 - 直到被唤醒或打断或超时
public final long awaitNanos(long nanosTimeout) throws InterruptedException {
if (Thread.interrupted()) {
throw new InterruptedException();
}
// 添加一个 Node 至等待队列, 见 ㈠
Node node = addConditionWaiter();
// 释放节点持有的锁
int savedState = fullyRelease(node);
// 获得最后期限
final long deadline = System.nanoTime() + nanosTimeout;
int interruptMode = 0;
// 如果该节点还没有转移至 AQS 队列, 阻塞
while (!isOnSyncQueue(node)) {
// 已超时, 退出等待队列
if (nanosTimeout <= 0L) {
transferAfterCancelledWait(node);
break;
}
// park 阻塞一定时间, spinForTimeoutThreshold 为 1000 ns
if (nanosTimeout >= spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
// 如果被打断, 退出等待队列
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
// 退出等待队列后, 还需要获得 AQS 队列的锁
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
// 所有已取消的 Node 从队列链表删除, 见 ㈡
if (node.nextWaiter != null)
unlinkCancelledWaiters();
// 应用打断模式, 见 ㈤
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return deadline - System.nanoTime();
}
// 等待 - 直到被唤醒或打断或超时, 逻辑类似于 awaitNanos
public final boolean awaitUntil(Date deadline) throws InterruptedException {
// ...
}
// 等待 - 直到被唤醒或打断或超时, 逻辑类似于 awaitNanos
public final boolean await(long time, TimeUnit unit) throws InterruptedException {
// ...
}
// 工具方法 省略 ...
}