本文仅为个人娱乐,请勿用作其他用途
chapter 2
leakage behavior of the transistor
variability
innovative devices
summarized as follow:
a linear dependence exists between voltage and current; threshold is a function of channel length and operational voltages.
velocity-saturation effect
decrease in output resistance of the device in saturation
Reason:
Model:
I D s a t = υ S a t W C o x ( V G S − V T H ) 2 ( V G S − V T H ) + E C L I_{Dsat} = \upsilon_{Sat}WC_{ox}\frac{(V_{GS}-V_{TH})^2}{(V_{GS}-V_{TH})+E_CL} IDsat=υSatWCox(VGS−VTH)+ECL(VGS−VTH)2 E C E_C EC the critical electrical field
the unified model
{ I D = 0 f o r V G T ≤ 0 I D = k ’ W L ( V G T V m i n − V m i n 2 2 ) ( 1 + λ V D S ) f o r V G T ≥ 0 w h e r e V m i n = m i n ( V G T , V D S , V D s a t ) V G T = V G S − V T H V T H = V T H 0 + γ ( ∣ − 2 ϕ F + V S B ∣ − ∣ − 2 ϕ F ∣ ) \begin{cases} I_D = 0for V_{GT}\leq0\\ I_D = k^{’}\frac{W}{L}(V_{GT}V_{min}-\frac{V_{min}^2}{2})(1+\lambda V_{DS}) for V_{GT} \geq 0 where V_{min} = min(V_{GT},V_{DS},V_{Dsat}) \\ V_{GT} = V_{GS}-V_{TH} \\V_{TH} = V_{TH0}+\gamma (\sqrt{|-2\phi_F+V_{SB}|}-\sqrt{|-2\phi_F|}) \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧ID=0forVGT≤0ID=k’LW(VGTVmin−2Vmin2)(1+λVDS)forVGT≥0whereVmin=min(VGT,VDS,VDsat)VGT=VGS−VTHVTH=VTH0+γ(∣−2ϕF+VSB∣−∣−2ϕF∣)
V D s a t V_{Dsat} VDsat is a fixed voltage
alpha model
I D S = W 2 L μ C o x ( V G S − V T H ) α I_{DS} = \frac{W}{2L}\mu C_{ox}(V_{GS}-V_{TH})^{\alpha} IDS=2LWμCox(VGS−VTH)α
use the extrapolation technique
not a constant V S B V_{SB} VSB can be used to control V T H V_{TH} VTH
The foremost is the body-bias or back-bias effect γ \gamma γ
channel length (short channel) shorter channel, smaller threshold
solutions: “halo implants” increases the threshold
DIBL: drain voltage influences the threshold
V T H = V T H 0 − λ d V D S V_{TH} = V_{TH0}-\lambda_d V_{DS} VTH=VTH0−λdVDS
below 180 nm level
Reason:
below 100 nm level
normally, the gate oxide(SiO2) thickness is scaled as well. cause a reduction in the gate resistance of the transistor
Reason:
Fowler-Nordheim(FN) tunneling
direct-oxide tunneling dominant
exponentially with respect to both of these parameters
solutions:
example:
keep the current the same while increase the thickness of the gate
k ’ = μ C g = μ ϵ / t g k^{’} = \mu C_{g} = \mu \epsilon/t_g k’=μCg=μϵ/tg
high- k k k gate replace SiO2 with high- k k k material
“equivalent oxide thickness” (EOT) = T g × ( ϵ o x / ϵ g ) T_g \times (\epsilon_{ox}/\epsilon_{g}) Tg×(ϵox/ϵg)
temperature rises, mobility reduces, V T H V_{TH} VTH reduces.
I o n I_{on} Ion decreases, I o f f I_{off} Ioff increases
worst-case corners(FF, SS, FS, SF) cause flunctations
low-power design: lower V D D / V T H V_{DD}/V_{TH} VDD/VTH, smaller SNR worse variability
Reason:
physical
manufacturing dominant
environmental solution: package
operational
strained silicon increase the mobility in CMOS SiGe PMOS effects better than NMOS
V T H V_{TH} VTH increases at the same time , I o n I_{on} Ion increase, I o f f I_{off} Ioff decrease
Silicon-on-insulator (SOI) have thin silicon layer
junction capacitances are reduced power saving
higher sub-threshold slope factor reduce leakage
sensitivity to soft errors
example: PD-SOI(partially-depleted) FD-SOI(fully-depleted)
FD-SOI with a buried gate control threshold
FinFET improve the effective channel length of the device SOI substrate
example: Double-gated(DG) MOSFET Back-gated(BG) MOSFET
CNT(carbon-nanotube)
I-MOS
MEMS