- SnowConvert:自动化数据迁移的技术解析与最佳实践
weixin_30777913
迁移学习数据库运维
SnowConvert是Snowflake生态系统的关键迁移工具,专为将传统数据仓库(如Oracle、Teradata、SQLServer等)的代码资产高效、准确地转换为Snowflake原生语法而设计。以下基于官方文档对其技术原理、工作流程及最佳实践进行深入分析:一、SnowConvert核心技术解析精准的语法映射引擎语言支持:深度解析源系统特有语法(OraclePL/SQL,TeradataB
- 实时数仓工具-SelectDB
清平乐的技术博客
实时数仓数据仓库
一、SelectDB简介官网:https://www.selectdb.com/1、ApacheDorisApacheDoris是一款采用MPP架构的实时分布式OLAP数据仓库,专注于高效的实时数据分析。Doris项目于2013年内部开发,2017年正式开源,目前在GitHub上获得了接近13,000星,全球已有超过5,000家企业采用,社区活跃度极高,累计贡献者超过650人,且曾连续数月在大数据
- 解锁 AnalyticDB for PostgreSQL 的潜力:从数据仓库到矢量数据库
aehrutktrjk
数据库postgresql数据仓库python
引言在大数据时代,快速分析大量数据已成为企业竞争的关键。AnalyticDBforPostgreSQL是阿里云提供的一个强大的并行处理数据仓库服务,适用于在线分析海量数据。本文将探讨其基本功能及在矢量数据库中的应用,包括如何与Langchain进行集成。主要内容AnalyticDBforPostgreSQL的核心功能大规模并行处理(MPP):允许高效地处理和分析大量数据。兼容性:支持ANSISQL
- 针对数据仓库方向的大数据算法工程师面试经验总结
巴基海贼王
数据仓库大数据算法
⚙️一、技术核心考察点数据建模能力星型vs雪花模型:面试官常要求对比两种模型。星型模型(事实表+冗余维度表)查询性能高但存储冗余;雪花模型(规范化维度表)减少冗余但增加JOIN复杂度。需结合场景选择,如实时分析首选星型。建模实战题:例如设计电商销售数仓,需明确事实表(订单流水)、维度表(商品、用户、时间),并解释粒度选择(如订单级)。ETL流程与优化增量抽取方案:面试高频题。需掌握基于时间戳、CD
- 解锁阿里云AnalyticDB:数据仓库的革新利器
云资源服务商
阿里云云计算数据库服务器
AnalyticDB:云数据仓库新势力在数字化浪潮中,数据已成为企业的核心资产,而云数据仓库作为数据管理与分析的关键基础设施,正扮演着愈发重要的角色。阿里云AnalyticDB作为云数据仓库领域的佼佼者,以其卓越的性能、创新的架构和丰富的功能,为企业提供了强大的数据处理与分析能力,助力企业在数据驱动的时代中脱颖而出。AnalyticDB是阿里云自主研发的云原生数据仓库,采用存储计算分离+多副本架构
- 【面试系列】云计算工程师 高频面试题及详细解答
野老杂谈
全网最全IT公司面试宝典面试云计算职场和发展
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️全流程数据技术实战指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台和数据仓库的核心技术和方法。文章目录常见的初级面试题1.什么是云计算?2.
- 使用Airbyte连接Shopify进行数据集成实践
2301_80727036
语言模型elasticsearchjenkins
在当今的数据驱动时代,数据集成平台如Airbyte变得尤为重要。它不仅可以让从API、数据库和文件到仓库或数据湖的ELT流程变得高效,还提供了丰富的连接器,支持各种数据源的集成。尽管Airbyte的Shopify连接器已经不再推荐使用,但它的使用方法仍然能为我们揭示一些重要的实践技巧。技术背景介绍Airbyte是一个开源的数据集成平台,专注于从各种数据源将数据提取、加载到目标数据仓库或者数据湖中。
- Java EDW三剑客:如何让数据从“沼泽”变身“报告神器”?手把手教你玩转企业数据仓库!
墨瑾轩
Java乐园java数据仓库开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣一、你的EDW在“数据沼泽”里?是时候请个“数据炼金术士”了!“数据散落在10个系统里,生成月报要熬3个通宵?”——别慌!今天我们就用JDBC+ApacheSpark+Thymeleaf三剑客,教你如何让Java在EDW中将“数据沼泽”炼成“报告神器”!从“数
- Vue2中Vuex的五种核心状态管理详解:从State到Modules
上单带刀不带妹
Vue前端javascript开发语言vuevue.js
目录一、为什么需要Vuex?二、Vuex核心概念图解编辑三、五种核心状态详解1.State:数据仓库2.Getters:计算属性3.Mutations:同步修改器4.Actions:异步操作5.Modules:模块化四、各概念关系总结五、最佳实践技巧结语一、为什么需要Vuex?当组件层级变深、兄弟组件需要共享数据时,传统的props/$emit和事件总线会变得难以维护。Vuex通过集中式存储管理应
- 十、HQL:排序、联合与 CTE 高级查询
IvanCodes
Hive教程hive大数据
作者:IvanCodes日期:2025年5月15日专栏:Hive教程ApacheHive作为大数据领域主流的数据仓库解决方案,其查询语言HQL(HiveQueryLanguage)是数据分析师和工程师日常工作的核心。除了基础的SELECT-FROM-WHERE,HQL还提供了强大的排序、数据合并以及组织复杂查询的机制。本文将深入探讨HQL中的排序操作(SORTBY,ORDERBY,CLUSTERB
- 数据仓库面试题合集⑥
晴天彩虹雨
数据仓库面试解析集锦数据仓库大数据clickhousekafka
实时指标体系设计+Flink优化实战:面试高频问题+项目答题模板面试中不仅会问“你做过实时处理吗?”,更会追问:“实时指标体系是怎么搭建的?”、“你们的Flink稳定性怎么保证?”本篇聚焦实时指标体系设计与Flink优化场景,帮你答出架构设计力,也答出调优实战感。①面试核心问题导读“你们实时指标是怎么设计的?”“怎么处理指标的去重、延迟和聚合问题?”“你们的Flink作业怎么做资源优化?”“有没有
- 【StarRocks系列】StarRocks vs Mysql
漫步者TZ
StarRocksmysql数据库StarRocks分布式数据库
目录StarRocks简介核心特性典型应用场景StarRocksvsMySQL:核心区别详解关键差异总结如何选择?StarRocks简介StarRocks是一款高性能、全场景、分布式、实时分析型的数据库(MPP-大规模并行处理)。它诞生于解决现代企业对海量数据进行快速、复杂分析的需求,尤其是在实时数据仓库、用户行为分析、日志分析、统一数仓等场景下表现卓越。核心特性MPP架构:采用无共享架构,计算和
- 数据切片是什么意思
yijiedsfrt
数据仓库
数据切片是指将一段数据按照特定的规则或条件进行分割,以便更方便地进行处理和分析。通常情况下,数据切片可以根据不同的维度、属性、时间等进行切割,以获取更加细化和精准的数据。数据切片可以在数据仓库、数据分析等领域中广泛应用。
- 医疗AI大数据处理流程的全面解析:从数据源到应用实践
Allen_Lyb
医疗高效编程研发人工智能机器学习健康医疗架构大数据
医疗AI大数据处理流程是一个复杂而系统的工程,涉及从数据源获取到最终应用的多个关键环节。随着信息技术在医疗行业的深入应用,医疗数据呈现爆发式增长,如何有效处理这些数据并转化为有价值的医疗知识,成为推动医疗AI发展的核心问题。本报告将全面剖析医疗AI大数据处理流程的关键环节,包括数据源、数据授权、数据接入、数据清洗、数据标准化、数据治理、数据应用与AI分析,以及数据流与数据仓库的概念,为医疗AI从业
- 使用Spring Boot框架来生成HTML页面并返回给客户端
_S_Q
后端服务Javaspringboothtmlpython
文章目录1.创建SpringBoot项目1.1项目结构2.配置`pom.xml`3.编写代码3.1创建主应用程序类3.2创建数据模型3.3创建数据仓库3.4创建控制器3.5创建HTML模板4.运行应用程序总结下面是一个简单的Java实现,使用SpringBoot框架来生成HTML页面并返回给客户端。1.创建SpringBoot项目首先,确保你已经安装了Java和Maven。然后创建一个新的Spri
- Doris 数据集成 Apache Paimon
猫猫姐
Dorisdoris
Doris数据集成ApachePaimon湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,已演进出一套成熟的湖仓一体解决方案。为便于用户快速入门,我们将通过系列文章介绍ApacheDoris与各类主流数据湖格式及存储系统的湖仓一体架构搭
- Hive集成Paimon
Edingbrugh.南空
数据湖hive大数据hivehadoop数据仓库
引言在大数据领域,数据存储与处理技术不断演进,各类数据管理工具层出不穷。ApacheHive作为经典的数据仓库工具,以其成熟的生态和强大的批处理能力,长期服务于海量数据的存储与分析;而ApachePaimon作为新兴的流式湖仓存储引擎,具备实时写入、高效查询和统一批流处理等特性,为数据管理带来了新的活力。将Hive与Paimon进行集成,能够充分融合两者优势,实现数据的高效存储、实时处理与灵活分析
- SPL轻量级多源混合计算
LuckJudy
数据计算多源混算esProcSPL
多样性数据源混合计算是常态需求,同构或异构数据库之间、文件与数据库、NoSQL与文件等,理论上任何数据存储之间都涉及数据混合计算和分析。但混算需求目前技术解决的并不好,同构库之间某些数据库还能支持,而完全异构的数据源实施混算就比较麻烦。经常要借助逻辑数据仓库,但基于SQL的逻辑数仓不仅能力有限,而且体系过于沉重,经常会比应用本身还复杂,只适合应用于大型场景中,并不适合众多日常的轻量多源混算场景。S
- 云原生数仓 vs 传统数仓:深度拆解区别、优劣势及主流选型
limnade
云原生数据仓库
云原生数仓vs传统数仓:深度拆解区别、优劣势及主流选型在数据驱动业务的当下,数据仓库作为企业数据中枢,承载着核心决策支持使命。随着云技术普及,云原生数仓与传统数仓的选型博弈愈发关键。本文从架构逻辑、核心能力到落地实践,深度拆解两者区别、优劣势,并梳理主流数仓方案,帮你精准锚定适配选型。一、底层逻辑:架构设计差异(一)传统数仓:紧耦合“巨石架构”传统数仓(如Teradata经典方案、Greenplu
- 深入理解SQLMesh中的SCD Type 2:缓慢变化维度的实现与管理
梦想画家
数据分析工程数据工程SCD2维度模型SQLMesh
在数据仓库和商业智能领域,处理随时间变化的数据是一个常见且具有挑战性的任务。缓慢变化维度(SlowlyChangingDimensions,SCD)是解决这一问题的经典模式。本文将深入探讨SQLMesh中SCDType2的实现方式、配置选项以及实际应用场景。什么是SCDType2?SCDType2是一种用于跟踪维度表中记录历史变化的模型。它通过为每条记录添加有效时间范围(valid_from和va
- 数据仓库 vs 数据湖:架构、应用场景与技术差异全解析
chat2tomorrow
SQL2API数据仓库低代码平台数据仓库架构sql2api大数据低代码数据湖
目录一、概念对比:结构化vs全类型数据二、技术架构对比1.数据仓库架构特点2.数据湖架构特点三、典型应用场景数据仓库适合:数据湖适合:四、数据湖仓一体:趋势还是折中?五、总结:如何选型?结语在大数据时代,“数据仓库”和“数据湖”常被同时提及,甚至被误认为是同一类技术方案。然而,二者在架构设计、数据处理方式、应用场景等方面存在显著差异。本文将从多个维度对比数据仓库与数据湖,帮助你厘清概念,选型不再困
- mysql查询每种产品的销售总额_MDX示例:统计各产品每个季度的销售排名
爱喝冰红茶
ITPUB数据仓库与数据挖掘论坛用户Damon__Li问:统计各种产品在本年每个季度的销售排名,(现在有日期、产品维度和销售额度量)大体显示如下Q1Q2Q3Q4销售额排名销售额排名销售额排名销售额排名产品130002200035000140ITPUB数据仓库与数据挖掘论坛用户Damon__Li问:统计各种产品在本年每个季度的销售排名,(现在有日期、产品维度和销售额度量)大体显示如下Q1Q2Q3Q4
- 从0到1搭建数据仓库指南
从0到1搭建一个数据仓库(DataWarehouse,DW)是一个复杂但结构化很强的工程。它不仅仅是技术选型,更是业务理解、架构设计、流程规范的结合。以下是一个清晰、分阶段的指南,帮助你系统性地完成搭建:核心原则:以业务驱动为核心:所有设计和开发都围绕解决实际业务问题展开。数据质量是生命线:从源头保证数据的准确性、一致性和完整性。可扩展性和灵活性:设计时要考虑未来数据量增长、新业务需求和技术演进。
- 【面试系列】Swift 高频面试题及详细解答
野老杂谈
全网最全IT公司面试宝典面试swift职场和发展编程语言
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️全流程数据技术实战指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台和数据仓库的核心技术和方法。文章目录Swift初级面试题及详细解答1.什么
- Hive 3.x集成Apache Ranger:打造精细化数据权限管理体系
引言在数据驱动的时代,企业的数据安全和权限管理愈发关键。Hive作为大数据领域常用的数据仓库工具,存储着海量敏感数据;ApacheRanger则是一款强大的权限管理框架,能为Hadoop生态组件提供细粒度的访问控制。将Hive3.x与ApacheRanger集成,可有效实现数据的分级管控,保障数据在安全的前提下合理使用。接下来,就为你带来Hive3.x集成ApacheRanger的详细操作指南,助
- 使用ETLCloud的SAP数据处理组件释放SAP数据的力量
苛子
数据仓库数据库数据挖掘
SAP用户面临的问题SAPEnterpriseResourcePlanning(ERP)作为国内最广泛使用的ERP系统之一许多大型企业都围绕SAP来进行业务的协同和数据流转。为了能对SAP中的数据用于分析、数据科学等业务我们需要把SAP中的数据同步到本地数据仓库中进行可视化分析和处理,而就这么一个简单的需求可以说是难倒很多企业的IT人员。目前很多企业往往花费大量的时间和精力在SAP的数据导出上,而
- 一台电脑最多能接多少个硬盘
服务器苹果签名分发
电脑
在电脑的世界里,硬盘就像是我们的“数据仓库”,存储着我们工作、学习、娱乐等方方面面的重要信息。随着数据量的不断增长,很多小伙伴都在想,能不能给电脑多接几个硬盘,来满足日益膨胀的存储需求呢?那么,一台电脑最多能接多少个硬盘呢?今天咱们就来好好探讨一下。硬盘接口类型决定接入数量基础电脑连接硬盘主要通过不同的接口,常见的有SATA接口、PCIe接口和USB接口等,不同接口类型对硬盘接入数量有着不同的限制
- DataHub 扩展数据源插件开发
北斗云
大数据#DataHubDataHub数据治理元数据管理主数据管理大数据
1.插件系统架构DataHub的元数据摄取框架采用了模块化、可扩展的插件架构,允许开发者轻松添加新的数据源连接器。这种架构使得DataHub能够与各种数据系统集成,包括数据库、数据仓库、BI工具、云服务等。1.1核心组件插件系统的核心组件包括:Source基类:所有数据源插件的基础类,定义了插件的基本接口和行为配置类:每个插件的配置参数定义装饰器:用于注册插件和声明插件能力工作单元:表示要处理的元
- 鸿蒙开发实战之Distributed Service Kit实现美颜相机多设备协同
harmonyos-next
一、核心能力全景通过DistributedServiceKit实现三大创新场景:多机位联拍手机+平板+智慧屏同步取景(时延{if(device.type==='tablet'){suggestCrossDeviceEdit();//推荐跨设备编辑}});//创建共享数据仓库constdataStore=distributedService.createDataStore({name:'beauty
- Hive sql全方位优化详解
sunxunyong
hivesqlhadoop
HSQL优化Hive作为大数据领域常用的数据仓库组件,在平时设计和查询时要特别注意效率。影响Hive效率的几乎从不是数据量过大,而是数据倾斜、数据冗余、job或I/O过多、MapReduce分配不合理等等。对Hive的调优既包含对HiveSQL语句本身的优化,也包含Hive配置项和MR方面的调整。列裁剪和分区裁剪最基本的操作。所谓列裁剪就是在查询时只读取需要的列,分区裁剪就是只读取需要的分区。以我
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在