STM32F407控制WH-NB73发送数据

STM32F407控制WH-NB73发送数据,通过透传云在网页显示数据。
通信协议:modbusRTU协议
Modbus是一种串行通信协议,是Modicon公司(现在的施耐德电气Schneider Electric)于1979年为使用可编程逻辑控制器(PLC)通信而发表。Modbus已经成为工业领域通信协议的业界标准(De facto),并且现在是工业电子设备之间常用的连接方式。Modbus比其他通信协议使用的更广
Modbus允许多个 (大约240个) 设备连接在同一个网络上进行通信,举个例子,一个由测量温度和湿度的装置,并且将结果发送给计算机。在数据采集与监视控制系统(SCADA)中,Modbus通常用来连接监控计算机和远程终端控制系统(RTU)。
modbudRTU详细介绍链接:
代码实现部分:407的串口3配置+DMA配置+CRCmodbus校验

#include "delay.h"
#include "usart3.h"
#include "stdarg.h"	 	 
#include "stdio.h"	 	 
#include "string.h"	  
#include "led.h"	

//串口发送缓存区 	
__align(8) u8 USART3_TX_BUF[USART3_MAX_SEND_LEN]; 	//发送缓冲,最大USART3_MAX_SEND_LEN字节
#ifdef USART3_RX_EN   								//如果使能了接收   	  
//串口接收缓存区 	
u8 USART3_RX_BUF[USART3_MAX_RECV_LEN]; 				//接收缓冲,最大USART3_MAX_RECV_LEN个字节.



//[15]:0,没有接收到数据;1,接收到了一批数据.
//[14:0]:接收到的数据长度
u16 USART3_RX_STA=0;   	 
//void USART3_IRQHandler(void)
//{
//	u8 i;	    
//	if(USART_GetITStatus(USART3, USART_IT_TXE) != RESET)//发送成功后
//	{	
//		USART_ClearITPendingBit(USART3,USART_IT_TXE); 
//  }
// 	
//}  
#endif	
//初始化IO 串口3
//bound:波特率	  
void usart3_init(u32 bound)
{  
	NVIC_InitTypeDef NVIC_InitStructure;
	GPIO_InitTypeDef GPIO_InitStructure;
	USART_InitTypeDef USART_InitStructure;
 
	USART_DeInit(USART3);  //复位串口3
	
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB,ENABLE); //使能GPIOB时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3,ENABLE);//使能USART3时钟
	
 
	 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_10; //GPIOB11和GPIOB10初始化
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用功能
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;	//速度50MHz
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉
	GPIO_Init(GPIOB,&GPIO_InitStructure); //初始化GPIOB11,和GPIOB10
	
	
	GPIO_PinAFConfig(GPIOB,GPIO_PinSource11,GPIO_AF_USART3); //GPIOB11复用为USART3
	GPIO_PinAFConfig(GPIOB,GPIO_PinSource10,GPIO_AF_USART3); //GPIOB10复用为USART3	  
	
	USART_InitStructure.USART_BaudRate = bound;//波特率一般设置为9600;
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
	USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
	USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
	USART_InitStructure.USART_Mode = USART_Mode_Tx;	//发模式
	USART_Init(USART3,&USART_InitStructure); //初始化串口3
	
	//USART_ITConfig(USART3, USART_IT_TXE, ENABLE);//开启中断  
		
	USART_Cmd(USART3, ENABLE);                    //使能串口 
//	NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
//	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2 ;//抢占优先级2
//	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;		//子优先级3
//	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//IRQ通道使能
//	NVIC_Init(&NVIC_InitStructure);	//根据指定的参数初始化VIC寄存器
//	USART3_RX_STA=0;				//清零 
}

//串口3,printf 函数
//确保一次发送数据不超过USART3_MAX_SEND_LEN字节
void u3_printf(char* fmt,...)  
{  
	u16 i,j;
	va_list ap;
	va_start(ap,fmt);
	vsprintf((char*)USART3_TX_BUF,fmt,ap);
	va_end(ap);
	i=strlen((const char*)USART3_TX_BUF);//此次发送数据的长度
	for(j=0;jDR=temp[t];
	while((USART3->SR&0X40)==0);//等待发送结束
//		LED0=0;
//		 delay_ms(500);
//		 LED0=1;
//		 delay_ms(500);
}
}
#include "dma.h"																	   	  
#include "delay.h"		 


//DMAx的各通道配置
//这里的传输形式是固定的,这点要根据不同的情况来修改
//从存储器->外设模式/8位数据宽度/存储器增量模式
//DMA_Streamx:DMA数据流,DMA1_Stream0~7/DMA2_Stream0~7
//chx:DMA通道选择,@ref DMA_channel DMA_Channel_0~DMA_Channel_7
//par:外设地址
//mar:存储器地址
//ndtr:数据传输量  
void MYDMA_Config(DMA_Stream_TypeDef *DMA_Streamx,u32 chx,u32 par,u32 mar,u16 ndtr)
{ 
 
	DMA_InitTypeDef  DMA_InitStructure;
	
	if((u32)DMA_Streamx>(u32)DMA2)//得到当前stream是属于DMA2还是DMA1
	{
	  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2,ENABLE);//DMA2时钟使能 
		
	}else 
	{
	  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1,ENABLE);//DMA1时钟使能 
	}
  DMA_DeInit(DMA_Streamx);
	
	while (DMA_GetCmdStatus(DMA_Streamx) != DISABLE){}//等待DMA可配置 
	
  /* 配置 DMA Stream */
  DMA_InitStructure.DMA_Channel = chx;  //通道选择
  DMA_InitStructure.DMA_PeripheralBaseAddr = par;//DMA外设地址
  DMA_InitStructure.DMA_Memory0BaseAddr = mar;//DMA 存储器0地址
  DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral;//存储器到外设模式
  DMA_InitStructure.DMA_BufferSize = ndtr;//数据传输量 
  DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设非增量模式
  DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;//存储器增量模式
  DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;//外设数据长度:8位
  DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;//存储器数据长度:8位
  DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;// 使用普通模式 
  DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;//中等优先级
  DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;         
  DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full;
  DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;//存储器突发单次传输
  DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;//外设突发单次传输
  DMA_Init(DMA_Streamx, &DMA_InitStructure);//初始化DMA Stream
	

} 
//开启一次DMA传输
//DMA_Streamx:DMA数据流,DMA1_Stream0~7/DMA2_Stream0~7 
//ndtr:数据传输量  
void MYDMA_Enable(DMA_Stream_TypeDef *DMA_Streamx,u16 ndtr)
{
 
	DMA_Cmd(DMA_Streamx, DISABLE);                      //关闭DMA传输 
	
	while (DMA_GetCmdStatus(DMA_Streamx) != DISABLE){}	//确保DMA可以被设置  
		
	DMA_SetCurrDataCounter(DMA_Streamx,ndtr);          //数据传输量  
 
	DMA_Cmd(DMA_Streamx, ENABLE);                      //开启DMA传输 
}	  
#include "nb73.h"
//CRC16校验表
static unsigned int ccitt_table[256] =
{ 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280,
0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481,
0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81,
0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880,
0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81,
0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80,
0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680,
0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081,
0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281,
0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480,
0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80,
0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881,
0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80,
0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81,
0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681,
0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080,
0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281,
0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480,
0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80,
0xAE41, 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881,
0x6840, 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80,
0xBA41, 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81,
0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681,
0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080,
0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280,
0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481,
0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81,
0x5E40, 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880,
0x9841, 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81,
0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80,
0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680,
0x8641, 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081,
0x4040,
};
//CRC16校验函数
uint16_t crc16(unsigned char *q, int len)
{
  unsigned int crc = 0xffff;
  
  while (len-- > 0)
    crc = ccitt_table[(crc ^ *q++) & 0xff] ^ (crc >> 8);
  
  return crc;
}

 


























 












你可能感兴趣的:(STM32F407控制WH-NB73发送数据)