斯坦福CS231n项目实战(三):Softmax线性分类

我的网站:红色石头的机器学习之路
我的CSDN:红色石头的专栏
我的知乎:红色石头
我的微博:RedstoneWill的微博
我的GitHub:RedstoneWill的GitHub
我的微信公众号:红色石头的机器学习之路(ID:redstonewill)

Softmax线性分类器的损失函数(Loss function)为:

Li=logesyiCj=1esj=syi+logj=1Cesj L i = − l o g e s y i ∑ j = 1 C e s j = − s y i + l o g ∑ j = 1 C e s j

其中, s=WTx s = W T x ,表示得分函数。 yi y i 表示正确样本的标签label,C表示总类别个数。该损失函数也称作cross-entropy loss。

实际运算过程中,因为有幂指数,为了避免数值过大,我们一般对得分函数s进行一些数值处理。处理原理如下:

esyiCj=1esj=DesyiDCj=1esj=esyi+logDCj=1esj+logD e s y i ∑ j = 1 C e s j = D e s y i D ∑ j = 1 C e s j = e s y i + l o g D ∑ j = 1 C e s j + l o g D

令:

logD=max(sj) l o g D = − m a x ( s j )

相应的python示例代码为:

scores = np.array([123, 456, 789])    # example with 3 classes and each having large scores
scores -= np.max(scores)    # scores becomes [-666, -333, 0]
p = np.exp(scores) / np.sum(np.exp(scores))

Softmax分类器计算每个类别的概率,其损失函数反应的是真实样本标签label的预测概率,概率越接近1,则loss越接近0。由于引入正则项,超参数 λ λ 越大,则对权重W的惩罚越大,使得W更小,分布趋于均匀,造成不同类别之间的概率分布也趋于均匀。下面举个例子来说明。

  • λ λ 较小时:

[1,2,0][e1,e2,e0]=[2.71,0.14,1][0.7,0.04,0.26] [ 1 , − 2 , 0 ] → [ e 1 , e − 2 , e 0 ] = [ 2.71 , 0.14 , 1 ] → [ 0.7 , 0.04 , 0.26 ]

  • λ λ 较大时:

[0.5,1,0][e0.5,e1,e0]=[1.65,0.37,1][0.55,0.12,0.33] [ 0.5 , − 1 , 0 ] → [ e 0.5 , e − 1 , e 0 ] = [ 1.65 , 0.37 , 1 ] → [ 0.55 , 0.12 , 0.33 ]

由上述例子可见,由于强正则化的影响,概率分布也趋于均匀。但是必须注意的是,概率之间的相对大小即顺序并没有改变。

线性SVM分类器和Softmax线性分类器的主要区别在于损失函数不同。SVM更关注分类正确样本和错误样本之间的距离( Δ=1 Δ = 1 ),只要距离大于 Δ Δ ,就不在乎到底距离相差多少,忽略细节。而Softmax中每个类别的得分函数都会影响其损失函数的大小。举个例子来说明,类别个数C=3,两个样本的得分函数分别为[10, -10, -10],[10, 9, 9],真实标签为第0类。对于SVM来说,这两个 Li L i 都为0;但对于Softmax来说,这两个 Li L i 分别为0.00和0.55,差别很大。

下面是Softmax线性分类器的实例代码,本文详细代码请见我的:

  • Github

  • 码云

1. Load the CIFAR10 dataset

# Load the raw CIFAR-10 data.
cifar10_dir = 'CIFAR10/datasets/cifar-10-batches-py'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

# As a sanity check, we print out the size of the training and test data.
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
Training data shape:  (50000, 32, 32, 3)
Training labels shape:  (50000,)
Test data shape:  (10000, 32, 32, 3)
Test labels shape:  (10000,)

Show some CIFAR10 images

classes = ['plane', 'car', 'bird', 'cat', 'dear', 'dog', 'frog', 'horse', 'ship', 'truck']
num_classes = len(classes)
num_each_class = 7

for y, cls in enumerate(classes):
    idxs = np.flatnonzero(y_train == y)
    idxs = np.random.choice(idxs, num_each_class, replace=False)
    for i, idx in enumerate(idxs):
        plt_idx = i * num_classes + (y + 1)
        plt.subplot(num_each_class, num_classes, plt_idx)
        plt.imshow(X_train[idx].astype('uint8'))
        plt.axis('off')
        if i == 0:
            plt.title(cls)
plt.show()

斯坦福CS231n项目实战(三):Softmax线性分类_第1张图片

Subsample the data for more efficient code execution

# Split the data into train, val, test sets and dev sets
num_train = 49000
num_val = 1000
num_test = 1000
num_dev = 500

# Validation set
mask = range(num_train, num_train + num_val)
X_val = X_train[mask]
y_val = y_train[mask]

# Train set
mask = range(num_train)
X_train = X_train[mask]
y_train = y_train[mask]

# Test set
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]

# Development set
mask = np.random.choice(num_train, num_dev, replace=False)
X_dev = X_train[mask]
y_dev = y_train[mask]

print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
print('Development data shape: ', X_dev.shape)
print('Development labels shape: ', y_dev.shape)
Train data shape:  (49000, 32, 32, 3)
Train labels shape:  (49000,)
Validation data shape:  (1000, 32, 32, 3)
Validation labels shape  (1000,)
Test data shape:  (1000, 32, 32, 3)
Test labels shape:  (1000,)
Development data shape:  (500, 32, 32, 3)
Development labels shape:  (500,)

2. Preprocessing

Reshape the images data into rows

# Preprocessing: reshape the images data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_val = np.reshape(X_val, (X_val.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))

print('Train data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
print('Development data shape: ', X_dev.shape)
Train data shape:  (49000, 3072)
Validation data shape:  (1000, 3072)
Test data shape:  (1000, 3072)
Development data shape:  (500, 3072)

Subtract the mean images

# Processing: subtract the mean images
mean_image = np.mean(X_train, axis=0)
plt.figure(figsize=(4,4))
plt.imshow(mean_image.reshape((32,32,3)).astype('uint8'))
plt.show()

斯坦福CS231n项目实战(三):Softmax线性分类_第2张图片

X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
X_dev -= mean_image

Append the bias dimension of ones

# append the bias dimension of ones (i.e. bias trick)
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
print('Train data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
print('Development data shape: ', X_dev.shape)
Train data shape:  (49000, 3073)
Validation data shape:  (1000, 3073)
Test data shape:  (1000, 3073)
Development data shape:  (500, 3073)

3. Define a linear Softmax classifier

class Softmax(object):
    def __init__(self):
        self.W = None

    def loss_naive(self, X, y, reg):
        """
        Structured Softmax loss function, naive implementation (with loops).
        Inputs:
        - X: A numpy array of shape (num_train, D) contain the training data
          consisting of num_train samples each of dimension D
        - y: A numpy array of shape (num_train,) contain the training labels,
          where y[i] is the label of X[i]
        - reg: float, regularization strength
        Return:
        - loss: the loss value between predict value and ground truth
        - dW: gradient of W
        """

        # Initialize loss and dW
        loss = 0.0
        dW = np.zeros(self.W.shape)

        # Compute the loss and dW
        num_train = X.shape[0]
        num_classes = self.W.shape[1]
        for i in range(num_train):
            scores = np.dot(X[i], self.W)
            scores -= np.max(scores)
            correct_class = y[i]
            correct_score = scores[correct_class]
            loss_i = -correct_score + np.log(np.sum(np.exp(scores)))
            loss += loss_i
            for j in range(num_classes):
                softmax_output = np.exp(scores[j]) / np.sum(np.exp(scores))
                if j == correct_class:
                    dW[:,j] += (-1 + softmax_output) * X[i,:]
                else:
                    dW[:,j] += softmax_output * X[i,:]

        loss /= num_train
        loss += 0.5 * reg * np.sum(self.W * self.W)
        dW /= num_train
        dW += reg * self.W

        return loss, dW

    def loss_vectorized(self, X, y, reg):
        """
        Structured Softmax loss function, vectorized implementation (without loops).
        Inputs:
        - X: A numpy array of shape (num_train, D) contain the training data
          consisting of num_train samples each of dimension D
        - y: A numpy array of shape (num_train,) contain the training labels,
          where y[i] is the label of X[i]
        - reg: float, regularization strength
        Return:
        - loss: the loss value between predict value and ground truth
        - dW: gradient of W
        """

        # Initialize loss and dW
        loss = 0.0
        dW = np.zeros(self.W.shape)

        # Compute the loss and dW
        num_train = X.shape[0]
        num_classes = self.W.shape[1]

        # loss
        scores = np.dot(X, self.W)
        scores -= np.max(scores, axis=1).reshape(-1, 1)
        softmax_output = np.exp(scores) / np.sum(np.exp(scores), axis=1).reshape(-1, 1)
        loss = np.sum(-np.log(softmax_output[range(softmax_output.shape[0]), list(y)]))
        loss /= num_train
        loss += 0.5 * reg * np.sum(self.W * self.W)

        # dW
        dS = softmax_output
        dS[range(dS.shape[0]), list(y)] += -1
        dW = np.dot(X.T, dS)
        dW /= num_train
        dW += reg * self.W

        return loss, dW

    def train(self, X, y, learning_rate = 1e-3, reg = 1e-5, num_iters = 100, 
             batch_size = 200, print_flag = False):
        """
        Train Softmax classifier using SGD
        Inputs:
        - X: A numpy array of shape (num_train, D) contain the training data
          consisting of num_train samples each of dimension D
        - y: A numpy array of shape (num_train,) contain the training labels,
          where y[i] is the label of X[i], y[i] = c, 0 <= c <= C
        - learning rate: (float) learning rate for optimization
        - reg: (float) regularization strength
        - num_iters: (integer) numbers of steps to take when optimization
        - batch_size: (integer) number of training examples to use at each step
        - print_flag: (boolean) If true, print the progress during optimization
        Outputs:
        - loss_history: A list containing the loss at each training iteration
        """

        loss_history = []
        num_train = X.shape[0]
        dim = X.shape[1]
        num_classes = np.max(y) + 1

        # Initialize W
        if self.W == None:
            self.W = 0.001 * np.random.randn(dim, num_classes)

        # iteration and optimization
        for t in range(num_iters):
            idx_batch = np.random.choice(num_train, batch_size, replace=True)
            X_batch = X[idx_batch]
            y_batch = y[idx_batch]
            loss, dW = self.loss_vectorized(X_batch, y_batch, reg)
            loss_history.append(loss)
            self.W += -learning_rate * dW

            if print_flag and t%100 == 0:
                print('iteration %d / %d: loss %f' % (t, num_iters, loss))

        return loss_history

    def predict(self, X):
        """
        Use the trained weights of Softmax to predict data labels
        Inputs:
        - X: A numpy array of shape (num_train, D) contain the training data
        Outputs:
        - y_pred: A numpy array, predicted labels for the data in X
        """

        y_pred = np.zeros(X.shape[0])
        scores = np.dot(X, self.W)
        y_pred = np.argmax(scores, axis=1)

        return y_pred        

4. Gradient Check

Define loss function

def loss_naive1(X, y, W, reg):
    """
    Structured Softmax loss function, naive implementation (with loops).
    Inputs:
    - X: A numpy array of shape (num_train, D) contain the training data
      consisting of num_train samples each of dimension D
    - y: A numpy array of shape (num_train,) contain the training labels,
      where y[i] is the label of X[i]
    - W: A numpy array of shape (D, C) contain the weights
    - reg: float, regularization strength
    Return:
    - loss: the loss value between predict value and ground truth
    - dW: gradient of W
    """

    # Initialize loss and dW
    loss = 0.0
    dW = np.zeros(W.shape)

    # Compute the loss and dW
    num_train = X.shape[0]
    num_classes = W.shape[1]
    for i in range(num_train):
        scores = np.dot(X[i], W)
        scores -= np.max(scores)
        correct_class = y[i]
        correct_score = scores[correct_class]
        loss_i = -correct_score + np.log(np.sum(np.exp(scores)))
        loss += loss_i
        for j in range(num_classes):
            softmax_output = np.exp(scores[j]) / np.sum(np.exp(scores))
            if j == correct_class:
                dW[:,j] += (-1 + softmax_output) * X[i,:]
            else:
                dW[:,j] += softmax_output * X[i,:]

    loss /= num_train
    loss += 0.5 * reg * np.sum(W * W)
    dW /= num_train
    dW += reg * W

    return loss, dW

def loss_vectorized1(X, y, W, reg):
    """
    Structured Softmax loss function, vectorized implementation (without loops).
    Inputs:
    - X: A numpy array of shape (num_train, D) contain the training data
      consisting of num_train samples each of dimension D
    - y: A numpy array of shape (num_train,) contain the training labels,
      where y[i] is the label of X[i]
    - W: A numpy array of shape (D, C) contain the weights
    - reg: float, regularization strength
    Return:
    - loss: the loss value between predict value and ground truth
    - dW: gradient of W
    """

    # Initialize loss and dW
    loss = 0.0
    dW = np.zeros(W.shape)

    # Compute the loss and dW
    num_train = X.shape[0]
    num_classes = W.shape[1]

    # loss
    scores = np.dot(X, W)
    scores -= np.max(scores, axis=1).reshape(-1, 1)
    softmax_output = np.exp(scores) / np.sum(np.exp(scores), axis=1).reshape(-1, 1)
    loss = np.sum(-np.log(softmax_output[range(softmax_output.shape[0]), list(y)]))
    loss /= num_train
    loss += 0.5 * reg * np.sum(W * W)

    # dW
    dS = softmax_output
    dS[range(dS.shape[0]), list(y)] += -1
    dW = np.dot(X.T, dS)
    dW /= num_train
    dW += reg * W

    return loss, dW

Gradient check

from gradient_check import grad_check_sparse
import time

# generate a random SVM weight matrix of small numbers
W = np.random.randn(3073, 10) * 0.0001

# Without regularization
loss, dW = loss_naive1(X_dev, y_dev, W, 0)
f = lambda W: loss_naive1(X_dev, y_dev, W, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, dW)

# With regularization
loss, dW = loss_naive1(X_dev, y_dev, W, 5e1)
f = lambda W: loss_naive1(X_dev, y_dev, W, 5e1)[0]
grad_numerical = grad_check_sparse(f, W, dW)
numerical: 1.382074 analytic: 1.382074, relative error: 2.603780e-08
numerical: 0.587997 analytic: 0.587997, relative error: 2.764543e-08
numerical: 2.466843 analytic: 2.466843, relative error: 8.029571e-09
numerical: -1.840196 analytic: -1.840196, relative error: 1.781980e-09
numerical: 1.444645 analytic: 1.444645, relative error: 6.200972e-08
numerical: -1.381959 analytic: -1.381959, relative error: 1.643225e-08
numerical: 1.122692 analytic: 1.122692, relative error: 1.600617e-08
numerical: 1.249459 analytic: 1.249459, relative error: 2.936177e-09
numerical: 1.556929 analytic: 1.556929, relative error: 1.452262e-08
numerical: 1.976238 analytic: 1.976238, relative error: 1.619212e-08
numerical: 2.308430 analytic: 2.308430, relative error: 7.769452e-10
numerical: -2.698441 analytic: -2.698440, relative error: 2.672068e-08
numerical: 1.991475 analytic: 1.991475, relative error: 3.035301e-08
numerical: -1.891048 analytic: -1.891048, relative error: 1.407403e-08
numerical: 1.409085 analytic: 1.409085, relative error: 1.916174e-08
numerical: 1.688600 analytic: 1.688600, relative error: 6.298778e-10
numerical: -0.140043 analytic: -0.140043, relative error: 7.654000e-08
numerical: -0.563577 analytic: -0.563577, relative error: 5.109196e-08
numerical: 0.224879 analytic: 0.224879, relative error: 1.218421e-07
numerical: -5.497099 analytic: -5.497099, relative error: 1.992705e-08

5. Stochastic Gradient Descent

softmax = Softmax()
loss_history = softmax.train(X_train, y_train, learning_rate = 1e-7, reg = 2.5e4, num_iters = 1500, 
             batch_size = 200, print_flag = True)
iteration 0 / 1500: loss 389.013148
iteration 100 / 1500: loss 235.704700
iteration 200 / 1500: loss 142.948192
iteration 300 / 1500: loss 87.236112
iteration 400 / 1500: loss 53.494956
iteration 500 / 1500: loss 33.153764
iteration 600 / 1500: loss 20.907861
iteration 700 / 1500: loss 13.442687
iteration 800 / 1500: loss 8.929345
iteration 900 / 1500: loss 6.238832
iteration 1000 / 1500: loss 4.559590
iteration 1100 / 1500: loss 3.501153
iteration 1200 / 1500: loss 2.924789
iteration 1300 / 1500: loss 2.552109
iteration 1400 / 1500: loss 2.370926
# Plot the loss_history
plt.plot(loss_history)
plt.xlabel('Iteration number')
plt.ylabel('loss value')
plt.show()

斯坦福CS231n项目实战(三):Softmax线性分类_第3张图片

# Use softmax classifier to predict
# Training set
y_pred = softmax.predict(X_train)
num_correct = np.sum(y_pred == y_train)
accuracy = np.mean(y_pred == y_train)
print('Training correct %d/%d: The accuracy is %f' % (num_correct, X_train.shape[0], accuracy))

# Test set
y_pred = softmax.predict(X_test)
num_correct = np.sum(y_pred == y_test)
accuracy = np.mean(y_pred == y_test)
print('Test correct %d/%d: The accuracy is %f' % (num_correct, X_test.shape[0], accuracy))
Training correct 17023/49000: The accuracy is 0.347408
Test correct 359/1000: The accuracy is 0.359000

6. Validation and Test

Cross-validation

learning_rates = [1.4e-7, 1.5e-7, 1.6e-7]
regularization_strengths = [8000.0, 9000.0, 10000.0, 11000.0, 18000.0, 19000.0, 20000.0, 21000.0]

results = {}
best_lr = None
best_reg = None
best_val = -1   # The highest validation accuracy that we have seen so far.
best_softmax = None # The LinearSVM object that achieved the highest validation rate.

for lr in learning_rates:
    for reg in regularization_strengths:
        softmax = Softmax()
        loss_history = softmax.train(X_train, y_train, learning_rate = lr, reg = reg, num_iters = 3000)
        y_train_pred = softmax.predict(X_train)
        accuracy_train = np.mean(y_train_pred == y_train)
        y_val_pred = softmax.predict(X_val)
        accuracy_val = np.mean(y_val_pred == y_val)
        results[(lr, reg)] = accuracy_train, accuracy_val
        if accuracy_val > best_val:
            best_lr = lr
            best_reg = reg
            best_val = accuracy_val
            best_softmax = softmax
        print('lr: %e reg: %e train accuracy: %f val accuracy: %f' %
              (lr, reg, results[(lr, reg)][0], results[(lr, reg)][1]))
print('Best validation accuracy during cross-validation:\nlr = %e, reg = %e, best_val = %f' %
      (best_lr, best_reg, best_val)) 
lr: 1.400000e-07 reg: 8.000000e+03 train accuracy: 0.376388 val accuracy: 0.381000
lr: 1.400000e-07 reg: 9.000000e+03 train accuracy: 0.378061 val accuracy: 0.393000
lr: 1.400000e-07 reg: 1.000000e+04 train accuracy: 0.375061 val accuracy: 0.394000
lr: 1.400000e-07 reg: 1.100000e+04 train accuracy: 0.370918 val accuracy: 0.389000
lr: 1.400000e-07 reg: 1.800000e+04 train accuracy: 0.361857 val accuracy: 0.378000
lr: 1.400000e-07 reg: 1.900000e+04 train accuracy: 0.354327 val accuracy: 0.373000
lr: 1.400000e-07 reg: 2.000000e+04 train accuracy: 0.357531 val accuracy: 0.370000
lr: 1.400000e-07 reg: 2.100000e+04 train accuracy: 0.351837 val accuracy: 0.374000
lr: 1.500000e-07 reg: 8.000000e+03 train accuracy: 0.380429 val accuracy: 0.387000
lr: 1.500000e-07 reg: 9.000000e+03 train accuracy: 0.375959 val accuracy: 0.393000
lr: 1.500000e-07 reg: 1.000000e+04 train accuracy: 0.373857 val accuracy: 0.397000
lr: 1.500000e-07 reg: 1.100000e+04 train accuracy: 0.371918 val accuracy: 0.386000
lr: 1.500000e-07 reg: 1.800000e+04 train accuracy: 0.359735 val accuracy: 0.379000
lr: 1.500000e-07 reg: 1.900000e+04 train accuracy: 0.359796 val accuracy: 0.373000
lr: 1.500000e-07 reg: 2.000000e+04 train accuracy: 0.352041 val accuracy: 0.365000
lr: 1.500000e-07 reg: 2.100000e+04 train accuracy: 0.356531 val accuracy: 0.372000
lr: 1.600000e-07 reg: 8.000000e+03 train accuracy: 0.378265 val accuracy: 0.394000
lr: 1.600000e-07 reg: 9.000000e+03 train accuracy: 0.377980 val accuracy: 0.391000
lr: 1.600000e-07 reg: 1.000000e+04 train accuracy: 0.371429 val accuracy: 0.389000
lr: 1.600000e-07 reg: 1.100000e+04 train accuracy: 0.374224 val accuracy: 0.391000
lr: 1.600000e-07 reg: 1.800000e+04 train accuracy: 0.360796 val accuracy: 0.386000
lr: 1.600000e-07 reg: 1.900000e+04 train accuracy: 0.355592 val accuracy: 0.371000
lr: 1.600000e-07 reg: 2.000000e+04 train accuracy: 0.356122 val accuracy: 0.368000
lr: 1.600000e-07 reg: 2.100000e+04 train accuracy: 0.354143 val accuracy: 0.367000
Best validation accuracy during cross-validation:
lr = 1.500000e-07, reg = 1.000000e+04, best_val = 0.397000

Visualize the cross-validation result

import math

x_scatter = [math.log10(x[0]) for x in results]
y_scatter = [math.log10(x[1]) for x in results]

maker_size = 100
plt.figure(figsize=(10,10))

# training accuracy
plt.subplot(2, 1, 1)
colors = [results[x][0] for x in results]
plt.scatter(x_scatter, y_scatter, maker_size, c=colors)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')

# validation accuracy
plt.subplot(2, 1, 2)
colors = [results[x][1] for x in results]
plt.scatter(x_scatter, y_scatter, maker_size, c=colors)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')
plt.show()

斯坦福CS231n项目实战(三):Softmax线性分类_第4张图片

Use the best softmax to test

y_pred = best_softmax.predict(X_test)
num_correct = np.sum(y_pred == y_test)
accuracy = np.mean(y_pred == y_test)
print('Test correct %d/%d: The accuracy is %f' % (num_correct, num_test, accuracy))
Test correct 379/1000: The accuracy is 0.379000

Visualize the weights for each class

W = best_softmax.W[:-1,:]    # delete the bias
W = np.reshape(W, (32, 32, 3, 10))
W_max, W_min = np.max(W), np.min(W)
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
plt.figure(figsize=(10,5))
for i in range(10):
    plt.subplot(2, 5, i+1)
    # Rescale the weights to be between 0 and 255
    imgW = 255.0 * (W[:,:,:,i] - W_min) / (W_max - W_min)
    plt.imshow(imgW.astype('uint8'))
    plt.axis('off')
    plt.title(classes[i])

斯坦福CS231n项目实战(三):Softmax线性分类_第5张图片

更多AI资源请关注公众号:红色石头的机器学习之路(ID:redstonewill)
斯坦福CS231n项目实战(三):Softmax线性分类_第6张图片

你可能感兴趣的:(机器学习,深度学习,斯坦福CS231n,斯坦福cs231n课程剖析)