【Python】三、Scipy——《用Python做科学计算》

1.最小二乘拟合

假设有一组实验数据(x[i], y[i]),我们知道它们之间的函数关系:y = f(x),通过这些已知信息,需要确定函数中的一些参数项。例如,如果f是一个线型函数f(x) = k*x+b,那么参数k和b就是我们需要确定的值。如果将这些参数用 p 表示的话,那么我们就是要找到一组 p 值使得如下公式中的S函数最小:

这种算法被称之为最小二乘拟合(Least-square fitting)。
-------------------------------------------------------------------------------------------------------------------------------
用已知数据集(x,y)去确定一组参数(k,b)使得实际的y值减去预测的y值的平方和最小。
-------------------------------------------------------------------------------------------------------------------------------
scipy中的子函数库optimize已经提供了实现最小二乘拟合算法的函数leastsq。下面是用leastsq进行数据拟合的一个例子:
# -*- coding: utf-8 -*-
# 注意如果代码里有中文,文件开头必须添加上面这句话,或者添加“#encoding:utf-8”。
import numpy as np
from scipy.optimize import leastsq
import pylab as pl

def func(x, p):
    """
    数据拟合所用的函数: A*sin(2*pi*k*x + theta)
    """
    A, k, theta = p
    return A*np.sin(2*np.pi*k*x+theta)   

def residuals(p, y, x):
    """
    实验数据x, y和拟合函数之间的差,p为拟合需要找到的系数
    """
    return y - func(x, p)

x = np.linspace(0, -2*np.pi, 100)
A, k, theta = 10, 0.34, np.pi/6 # 真实数据的函数参数
y0 = func(x, [A, k, theta]) # 真实数据
y1 = y0 + 2 * np.random.randn(len(x)) # 加入噪声之后的实验数据    

p0 = [7, 0.2, 0] # 第一次猜测的函数拟合参数

# 调用leastsq进行数据拟合
# residuals为计算误差的函数
# p0为拟合参数的初始值
# args为需要拟合的实验数据
plsq = leastsq(residuals, p0, args=(y1, x))

print u"真实参数:", [A, k, theta]
print u"拟合参数", plsq[0] # 实验数据拟合后的参数

pl.plot(x, y0, label=u"真实数据")
pl.plot(x, y1, label=u"带噪声的实验数据")
pl.plot(x, func(x, plsq[0]), label=u"拟合数据")
pl.legend()
pl.show()

这个例子中我们要拟合的函数是一个正弦波函数,它有三个参数 A, k, theta ,分别对应振幅、频率、相角。假设我们的实验数据是一组包含噪声的数据 x, y1,其中y1是在真实数据y0的基础上加入噪声的到了。

通过leastsq函数对带噪声的实验数据x, y1进行数据拟合,可以找到x和真实数据y0之间的正弦关系的三个参数: A, k, theta。
最后我们可以发现拟合参数虽然和真实参数完全不同,但是由于正弦函数具有周期性,实际上拟合参数得到的函数和真实参数对应的函数是一致的。

2. 函数最小值

optimize库提供了几个求函数最小值的算法:fmin, fmin_powell, fmin_cg, fmin_bfgs。下面的程序通过求解卷积的逆运算演示fmin的功能。

对于一个离散的线性时不变系统h, 如果它的输入是x,那么其输出y可以用x和h的卷积表示:

现在的问题是如果已知系统的输入x和输出y,如何计算系统的传递函数h;或者如果已知系统的传递函数h和系统的输出y,如何计算系统的输入x。这种运算被称为反卷积运算,是十分困难的,特别是在实际的运用中,测量系统的输出总是存在误差的。

下面用fmin计算反卷积,这种方法只能用在很小规模的数列之上,因此没有很大的实用价值,不过用来评价fmin函数的性能还是不错的。
# -*- coding: utf-8 -*-
# 本程序用各种fmin函数求卷积的逆运算

import scipy.optimize as opt
import numpy as np

def test_fmin_convolve(fminfunc, x, h, y, yn, x0):
    """
    x (*) h = y, (*)表示卷积
    yn为在y的基础上添加一些干扰噪声的结果
    x0为求解x的初始值
    """
    def convolve_func(h):
        """
        计算 yn - x (*) h 的power
        fmin将通过计算使得此power最小
        """
        return np.sum((yn - np.convolve(x, h))**2)

    # 调用fmin函数,以x0为初始值
    h0 = fminfunc(convolve_func, x0)

    print fminfunc.__name__
    print "---------------------"
    # 输出 x (*) h0 和 y 之间的相对误差
    print "error of y:", np.sum((np.convolve(x, h0)-y)**2)/np.sum(y**2)
    # 输出 h0 和 h 之间的相对误差
    print "error of h:", np.sum((h0-h)**2)/np.sum(h**2)
    print

def test_n(m, n, nscale):
    """
    随机产生x, h, y, yn, x0等数列,调用各种fmin函数求解b
    m为x的长度, n为h的长度, nscale为干扰的强度
    """
    x = np.random.rand(m)
    h = np.random.rand(n)
    y = np.convolve(x, h)
    yn = y + np.random.rand(len(y)) * nscale
    x0 = np.random.rand(n)

    test_fmin_convolve(opt.fmin, x, h, y, yn, x0)
    test_fmin_convolve(opt.fmin_powell, x, h, y, yn, x0)
    test_fmin_convolve(opt.fmin_cg, x, h, y, yn, x0)
    test_fmin_convolve(opt.fmin_bfgs, x, h, y, yn, x0)

if __name__ == "__main__":
    test_n(200, 20, 0.1)

-------------------------------------------------------------------------------------------------------------------------------

if __name__ == "__main__"
上面这句代码的功能是在当前文件下编译运行的时候,执行if下面的语句。如果在其他文件内通过import调用本文件,if内语句不执行。

-------------------------------------------------------------------------------------------------------------------------------

3.非线性方程组求解

optimize库中的fsolve函数可以用来对非线性方程组进行求解。它的基本调用形式如下:
fsolve(func, x0)
func(x)是计算方程组误差的函数,它的参数x是一个矢量,表示方程组的各个未知数的一组可能解,func返回将x代入方程组之后得到的误差;x0为未知数矢量的初始值。如果要对如下方程组进行求解的话:
f1(u1,u2,u3) = 0
f2(u1,u2,u3) = 0
f3(u1,u2,u3) = 0
那么func可以如下定义:
def func(x):
    u1,u2,u3 = x
    return [f1(u1,u2,u3), f2(u1,u2,u3), f3(u1,u2,u3)]
下面是一个实际的例子,求解如下方程组的解:
5*x1 + 3 = 0
4*x0*x0 - 2*sin(x1*x2) = 0
x1*x2 - 1.5 = 0
程序如下:
from scipy.optimize import fsolve
from math import sin,cos

def f(x):
    x0 = float(x[0])
    x1 = float(x[1])
    x2 = float(x[2])
    return [
        5*x1+3,
        4*x0*x0 - 2*sin(x1*x2),
        x1*x2 - 1.5
    ]

result = fsolve(f, [1,1,1])

print result
print f(result)
输出为:
[-0.70622057 -0.6        -2.5       ]
[0.0, -9.1260332624187868e-14, 5.3290705182007514e-15]
由于fsolve函数在调用函数f时,传递的参数为数组,因此如果直接使用数组中的元素计算的话,计算速度将会有所降低,因此这里先用float函数将数组中的元素转换为Python中的标准浮点数,然后调用标准math库中的函数进行运算。

在对方程组进行求解时,fsolve会自动计算方程组的雅可比矩阵,如果方程组中的未知数很多,而与每个方程有关的未知数较少时,即雅可比矩阵比较稀疏时,传递一个计算雅可比矩阵的函数将能大幅度提高运算速度。
雅可比矩阵
雅可比矩阵是一阶偏导数以一定方式排列的矩阵,它给出了可微分方程与给定点的最优线性逼近,因此类似于多元函数的导数。例如前面的函数f1,f2,f3和未知数u1,u2,u3的雅可比矩阵如下:
【Python】三、Scipy——《用Python做科学计算》_第1张图片
使用雅可比矩阵的fsolve实例如下,计算雅可比矩阵的函数j通过fprime参数传递给fsolve,函数j和函数f一样,有一个未知数的解矢量参数x,函数j计算非线性方程组在矢量x点上的雅可比矩阵。由于这个例子中未知数很少,因此程序计算雅可比矩阵并不能带来计算速度的提升。
# -*- coding: utf-8 -*-
from scipy.optimize import fsolve
from math import sin,cos
def f(x):
    x0 = float(x[0])
    x1 = float(x[1])
    x2 = float(x[2])
    return [
        5*x1+3,
        4*x0*x0 - 2*sin(x1*x2),
        x1*x2 - 1.5
    ]
    
def j(x):
    x0 = float(x[0])
    x1 = float(x[1])
    x2 = float(x[2])    
    return [
        [0, 5, 0],
        [8*x0, -2*x2*cos(x1*x2), -2*x1*cos(x1*x2)],
        [0, x2, x1]
    ]
 
result = fsolve(f, [1,1,1], fprime=j)
print result
print f(result)

4.数值积分

数值积分是对定积分的数值求解,例如可以利用数值积分计算某个形状的面积。下面让我们来考虑一下如何计算半径为1的半圆的面积,根据圆的面积公式,其面积应该等于PI/2。单位半圆(X轴上面的半圆)曲线可以用下面的函数表示:
def half_circle(x):
    return (1-x**2)**0.5
下面的程序使用经典的分小矩形计算面积总和的方式,计算出单位半圆的面积:
>>> N = 10000
>>> x = np.linspace(-1, 1, N)
>>> dx = 2.0/N # 这个值其实就是上面x每相邻两个点之间的距离,也就是举行的宽
>>> y = half_circle(x) # 每一点的纵坐标,每一点到下一点极端的看成高一致。这样每一点的y值乘以dx就是当前点到下一点之间矩形的面积。
>>> dx * np.sum(y) * 2 # 求面积的两倍方便看pi数值
3.1412751679988937
利用上述方式计算出的圆上一系列点的坐标,还可以用numpy.trapz进行数值积分:
>>> import numpy as np
>>> np.trapz(y, x) * 2 # 面积的两倍
3.1415893269316042
此函数计算的是以x,y为顶点坐标的折线与X轴所夹的面积。同样的分割点数,trapz函数的结果更加接近精确值一些。

如果我们调用scipy.integrate库中的quad函数的话,将会得到非常精确的结果:
>>> from scipy import integrate
>>> pi_half, err = integrate.quad(half_circle, -1, 1)
>>> pi_half*2
3.1415926535897984

这一节我搬过来的内容少很多,想学更多内容的读者建议去原地址学习。
本文参考自:http://old.sebug.net/paper/books/scipydoc/scipy_intro.html#id1

你可能感兴趣的:(Python)