- 【数据挖掘在量化交易中的应用:特征发现与特征提取】
调皮的芋头
数据挖掘人工智能神经网络
好的,我将撰写一篇关于金融领域数据挖掘的技术博客,重点阐述特征发现和特征提取,特别是在量化交易中的应用。我会提供具体的实操步骤,并结合Python和TensorFlow进行代码示例。完成后,我会通知您进行查看。数据挖掘在量化交易中的应用:特征发现与特征提取1.概述在金融领域的量化交易中,数据挖掘扮演着极其重要的角色。量化交易依赖于对海量金融数据的分析,从中寻找规律和模式,以支撑交易决策。数据挖掘技
- 三角函数公式
菜就多练,输不起,就别玩
c语言开发语言算法c++
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。基本信息中文名三角函数外文名trigonometricfunct
- 使用Diffusion Models进行图像超分辩重建
沉迷单车的追风少年
DiffusionModels与深度学习人工智能计算机视觉超分辨率重建AIGC深度学习
DiffusionModels专栏文章汇总:入门与实战前言:图像超分辨率重建是一个经典CV任务,其实LR(低分辨率)和HR(高分辨率)图像仅在高频细节上存在差异。通过添加适当的噪声,LR图像将变得与其HR对应图像无法区分。这篇博客介绍一种方式巧妙利用这个规律使用DiffusionModels进行图像超分辩重建任务。目录贡献概述动机方法详解模型训练论文贡献概述这项研究提出了一种基于扩散逆过程的新图像
- 如何通过指标平台,最大化地提升数据分析的效率和质量?
Aloudata
大数据数据分析NoETL指标平台指标体系
通常来说,指标能够准确反映业务的核心绩效和潜在问题等。通过指标平台,有助于企业更有针对性地收集和分析数据。例如,通过动态分析,企业可以观察数据随时间的变化趋势,发现数据中的模式和规律,为业务决策提供依据;通过实时监控更新的数据并进行分析,帮助企业及时发现潜在问题,采取相应的措施;以及快速生成包含关键绩效(KPI)和分析结果的报告,帮助企业管理者实现对各部门、各组织的关键绩效达成和存在问题的全面洞察
- 自动控制原理研究
南风过闲庭
ai人工智能科技大数据硬件工程自动化
1.1定义与研究对象自动控制理论是研究自动控制共同规律的技术科学。其核心在于利用物理装置或控制算法,在无人直接干预的情况下,对被控对象进行合理的控制,使被控量保持恒定或按照预定规律变化。例如在工业生产中,通过自动控制系统可以精确控制温度、压力、流量等参数,确保生产过程的稳定性和产品质量的一致性。自动控制理论的研究对象涵盖了广泛的领域,包括工业自动化、航空航天、交通运输、机器人技术等。在工业自动化中
- 怎么获取业务所需有效时间代理IP?长效IP如何解决网络不稳定问题?
代理服务器动态代理ip地址
获取业务所需有效时间的代理IP并利用长效IP解决网络不稳定问题,可以遵循以下步骤和策略:一、获取业务所需有效时间的代理IP1.明确业务需求确定业务的运行时间规律,比如业务高峰时段和低谷时段。分析业务所需流量,这有助于确定代理IP的带宽需求。了解平台对IP的要求,包括IP的地理位置、匿名性等。设定业务预算,以便在选择代理服务时有所依据。2.寻找合适的代理服务商搜索并评估市场上的代理IP服务商,选择那
- 分布式锁的实现(秒杀为背景)
..Serendipity
redisredis
1.全局唯一ID在秒杀后生成的订单,订单ID的设计是值得考虑的。是采用数据库的自增?必然是不行的,首先若是一张订单表,其表的容量是有上限的,且订单的数据量巨大,若是采用多库多表进行存储,那么每个表自增ID都是从1开始,会造成订单ID的重复,且自增ID规律性强,容易被猜测,具有安全隐患。1.1ID生成策略采用UUID雪花算法采用Redis的自增并且根据业务进行拼接采用Redis的自增并且根据业务进行
- Python 爬虫实战:彩票数据抓取、概率洞察与趋势预测
西攻城狮北
python爬虫开发语言实战案例
概述彩票作为一种广受欢迎的博彩活动,吸引了大量参与者。通过对彩票数据的分析,可以揭示号码出现的规律、概率分布以及潜在的趋势。这些分析不仅有助于彩票爱好者更好地理解游戏机制,还可以为相关研究提供数据支持。本文将详细介绍如何使用Python爬虫技术抓取彩票数据,并进行概率分析和趋势预测。技术栈Python:动态解释型编程语言,适用于爬虫、数据分析和可视化等多种场景。Requests:强大的HTTP请求
- 《微软量子芯片:开启量子计算新纪元》:此文为AI自动生成
空云风语
人工智能量子计算
量子计算的神秘面纱在科技飞速发展的今天,量子计算作为前沿领域,正逐渐走进大众的视野。它宛如一把神秘的钥匙,有望开启未来科技变革的大门,而微软量子芯片则是这把钥匙上一颗璀璨的明珠。量子计算,简单来说,是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。与我们日常生活中接触的传统计算机相比,它有着本质的区别。传统计算机基于二进制数字系统,使用二进制比特(Bit)来表示数据和进行计算,比特的状
- 当你给大模型一段输入之后,它是怎么得到答案的
牛不才
000-大模型chatgptAIGC文心一言gptllamaagiprompt
1.先把问题“嚼碎”(输入处理)比如你问:“太阳为什么东升西落?”切分知识点:模型会把这句话拆解成词汇单元(比如:“太阳”“为什么”“东”“升”“西”“落”),就像你背单词时先拆解句子。2.动用毕生所学(模型“回想”知识)大模型并不是真有一个“数据库”,而是依靠训练时海量的知识联结:(类似人类的经验积累)内在规律:从上学过的教材、论文、百科中记住过“地球自转导致太阳视运动”这个常识。猜测套路:统计
- MATLAB学习之旅:数据插值与曲线拟合
Evaporator Core
matlabmatlab学习算法
在MATLAB的奇妙世界里,我们已经走过了一段又一段的学习旅程。从基础的语法和数据处理,到如今,我们即将踏入数据插值与曲线拟合这片充满魅力的领域。这个领域就像是魔法中的艺术创作,能够让我们根据现有的数据点,构建出更加丰富的曲线和曲面,从而更好地理解和描述数据背后的规律。数据插值:用已知点填补空白数据插值是在给定的离散数据点之间,通过某种方法估算出中间未知点的方法。这就好比我们在一幅拼图中,有些碎片
- 深入浅出机器学习:概念、算法与实践
倔强的小石头_
AI机器学习算法人工智能
目录引言机器学习的基本概念什么是机器学习机器学习的基本要素机器学习的主要类型监督学习(SupervisedLearning)无监督学习(UnsupervisedLearning)强化学习(ReinforcementLearning)机器学习的一般流程总结引言在当今数字化时代,数据量呈爆炸式增长。机器学习作为一门多领域交叉学科,致力于让计算机系统从数据中自动学习模式和规律,进而实现对未知数据的预测和
- 大语言模型架构:从基础到进阶,如何理解和演变
运维小子
语言模型人工智能python
引言你可能听说过像ChatGPT这样的AI模型,它们能够理解并生成自然语言文本。这些模型的背后有着复杂的架构和技术,但如果你了解这些架构,就能明白它们是如何工作的。今天,我们将用简单的语言,逐步介绍大语言模型的架构,并且展示这些架构是如何随着时间演变的。1.大语言模型架构概述大语言模型(例如GPT、BERT、T5)是基于神经网络的计算模型,它们通过分析大量文本数据,学习语言的结构和规律。语言模型的
- 基于Hadoop的天气数据分析系统的设计与实现-计算机毕业设计源码+LW文档
qq_375279829
hadoop课程设计eclipse毕业设计毕设
摘要随着全球气候变化的日益严峻,精准的天气数据分析和预测变得至关重要。Hadoop作为大数据处理领域的领军技术,其分布式计算框架和海量数据存储能力为天气数据分析提供了强大的支持。该系统能够收集、整合并分析来自全球各地的气象数据,通过挖掘数据中的潜在规律,提高天气预报的准确性和时效性。此外,该系统还有助于发现气候变化的趋势,为政府决策、农业生产、交通运输等领域提供科学依据。因此,基于Hadoop的天
- 什么是机器学习?
CM莫问
机器学习模型机器学习人工智能算法
一、概念(维基百科)机器学习是人工智能的一个分支。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。二、主要特点机器学习的主要特点包括:1、数据驱动:机器学习模型的性能主要依赖于输入的数据。数据的质量和数量直接影响模型的准确性和泛化能力,所谓“Garbagein,garbag
- 【IT规划设计】IP地址规划参考思路
supportlx
网络
1.IP地址规划原则目前集团的IP地址欠缺统一规划,存在分配不合理和不连续情况,极大增加网络运维和系统运维的难度。缺乏IP地址分配和回收的管理机制,容易造成IP地址冲突。不同业务混合在一个VLAN地址段,不同安全域的IP地址范围没有关联规律,比较杂乱,不好记忆,缺乏IP指导规范。需要对IP地址管理进行梳理和规范。新IP地址规划原则如下:新的地址规划将兼容现有的集团地址空间分配原则,同时也会对一些功
- 数据分析:彩票中奖号码分析与预测
LensonYuan
python学习教程数据挖掘数据分析统计学习
预测双色球彩票的中奖号码是一个典型的随机事件,因为每个号码的出现概率是独立的,且历史数据并不能直接用于预测未来的开奖结果。然而,我们可以通过统计分析来了解号码的分布规律,从而提供一些可能的参考。样例数据【点击下载】统计分析步骤频率分析:统计每个号码在历史数据中出现的频率。遗漏分析:统计每个号码在历史数据中未出现的期数。热号与冷号:根据频率和遗漏情况,区分热号(出现频率高)和冷号(出现频率低)。组合
- 数字引擎驱动价值裂变:企业数字化转型的五大实现路径
Light60
数字化转型价值实现数据驱动流程优化组织变革
摘要数字化转型已成为企业重构竞争优势的核心战略。本文通过解构数字化转型的价值实现逻辑,提出以战略领航、数据驱动、流程再造、生态协同、组织进化为核心的"五维动力模型",系统阐述企业通过数字化实现业务增长、效率提升和模式创新的具体路径。结合京东、海尔、马士基等标杆案例,揭示数字化转型从技术应用到价值创造的关键跃迁规律,为企业提供兼具战略高度与实操价值的转型指南。关键词:数字化转型、价值实现、数据驱动、
- 2025年AI技术趋势深度解析:从World Model到智能共生,如何重塑未来?
weixin_74887700
人工智能
一、AI从实验室走向物理世界1.WorldModel元年:3D模型开启物理智能时代2025年被视为“世界大模型(WorldModel)”的元年,AI从文本、图像等低维数据处理跃升至理解物理世界规律的3D模型阶段。例如,李飞飞团队主导的LWM(世界模型)将推动自动驾驶、工业仿真等领域的突破,AI可通过虚拟环境模拟复杂物理交互,优化决策效率。应用场景:自动驾驶测试(如Waymo)、工业设计仿真、灾害预
- 人类社会的本质是什么?
初学者↑
毛选
毛选中最接近本质的八句话,句句都是处理一切事物都适用的顶级法则,你最好背下来,能用一辈子。第一句话,谁是我们的朋友?谁是我们的敌人?这个问题是革命的首要问题。正确归因的能力,是一个人真正清醒且能够进入人生上升螺旋的开始。透过表象看本质,抓住本质找规律,运用规律才能改变世界。这句话能成为毛选开篇的第一句话,就是因为这是一句无限接近于底层规律的话。原文里讨论的是阶级问题,放在生意里照样适用。谁赚我的钱
- (九万字)面向2025年BOSS直聘人工智能算法工程师高频面试题解析
快撑死的鱼
人工智能回归pythonpytorch
面向2025年BOSS直聘人工智能算法工程师高频面试题解析1.机器学习(ML)理论解析机器学习是让计算机从数据中学习规律的一套方法论,包含监督学习、无监督学习和强化学习等范式。在监督学习中,给定带标签的数据,算法尝试学习从输入到输出的映射关系;无监督学习则在缺乏标签的情况下挖掘数据内在结构;强化学习则让智能体通过与环境交互、依据奖赏反馈来改进策略(Q-learning-Wikipedia)。机器学
- 鸢尾花分类项目 GUI
编织幻境的妖
分类数据挖掘人工智能
1.机器学习的定义机器学习是一门人工智能的分支,专注于开发算法和统计模型,使计算机能够在没有明确编程的情况下从数据中自动学习和改进。通过识别数据中的模式和规律,机器学习系统可以做出预测或决策。常见的应用包括图像识别、语音识别、推荐系统等。2.为什么使用鸢尾花数据集(Irisdataset)鸢尾花数据集是一个经典的多类分类问题数据集,由英国统计学家和遗传学家RonaldFisher在1936年引入。
- 灰色系统理论及其关联分析方法
青橘MATLAB学习
算法matlab数学建模
前言在现实世界中,许多系统的内部结构、参数及特征并未完全被人们认知。例如,粮食产量受肥料、气象、政策等多因素影响,但各因素与产量间的定量关系难以明确。这类部分信息已知、部分信息未知的系统被称为灰色系统。灰色系统理论从数据本征特性出发,通过有限信息挖掘系统规律,为信息匮乏或紊乱的问题提供建模与分析方法。本章将介绍灰色系统的基本概念及其核心方法——关联分析,揭示如何通过动态态势量化解决实际问题。§1灰
- 温度传感器的工作原理
JZMSYYQ
温度传感器功能测试
温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。温度传感器是最早开发,应用zui广的一类传感器。温度传感器的shi场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。两种不同材质的导体,如在
- Python 函数-调用函数
赔罪
Python系统学习python开发语言
目录抽象调用函数数据类型转换练习小结我们知道圆的面积计算公式为:S=πr2当我们知道半径r的值时,就可以根据公式计算出面积。假设我们需要计算3个不同大小的圆的面积:r1=12.34r2=9.08r3=73.1s1=3.14*r1*r1s2=3.14*r2*r2s3=3.14*r3*r3当代码出现有规律的重复的时候,你就需要当心了,每次写3.14*x*x不仅很麻烦,而且,如果要把3.14改成3.14
- 跟我一起学Python数据处理(六十八):用图表让数据可视化
lilye66
信息可视化python开发语言pandas
跟我一起学Python数据处理(六十八):用图表让数据可视化大家好!在数据处理的学习道路上,我一直希望能和大家携手共进、共同成长。今天咱们继续深入学习Python数据处理中的重要内容——数据可视化。学会用合适的图表展示数据,不仅能让数据变得直观易懂,还能帮助我们发现数据背后隐藏的信息和规律。话不多说,咱们马上开始今天的学习之旅!一、不同图表的特点与应用场景在数据可视化的世界里,有各种各样的图表,每
- 【华为OD机考】华为OD笔试真题解析(11)--对称美学
油泼辣子多加
华为OD真题解析华为od
题目描述对称就是最大的美学,现有一道关于对称字符串的美学。已知:第1个字符串:R第2个字符串:BR第3个字符串:RBBR第4个字符串:BRRBRBBR第5个字符串:RBBRBRRBBRRBRBBR相信你已经发现规律了,没错!就是第i个字符串=第i-1个字符串的取反+第i-1个字符串,其中取反是R->B、B->R。现在告诉你n和k,让你求得第n个字符串的第k个字符是多少。(k的编号从0开始)输入描述
- 记一次生产事故:MongoDB数据分布不均的解决方案
悲伤荷包蛋hb
mongodbgithub数据库
事故集合:可以很明显可以看到我们这个集合的数据严重分布不均匀。一共有8个分片,面对这个情况我首先想到的是手动拆分数据块,但这不是解决此问题的根本办法。造成此次生产事故的首要原因就是片键选择上的问题,由于片键选择失误,在数据量级不大的时候数据看起来还是很健康的,但随着数据量的暴涨,问题就慢慢浮出了水面,我们使用的组合片键并不是无规律的,片键内容是线性增长的,这就导致了数据的不正常聚集。由于数据分布不
- 机器学习相关基础
星辰瑞云
机器学习
1.预备知识人工智能:用人工的方法在机器(计算机)上实现的智能;或者说是人们使机器具有类似于人的智能。人工智能学科:人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。2.日常生活中的机器学习:①称为RGB(由红色,绿色,蓝色组成),这种是欠拟合欠拟合和过拟合区别:•欠拟合(Underfitting):模型在训练数据上表现不佳,无法很好地捕捉数据中的规律。通
- 一文理解大模型,并对当前流行模型做对比
Jing_saveSlave
AIai人工智能chatgpt
什么是大模型?大模型就像是一个“超级智能大脑”,它通过海量数据和复杂的计算结构(比如神经网络)学习人类语言、图像、声音等信息的规律。它的核心特点是参数数量极其庞大(比如千亿甚至万亿级),这些参数可以理解为大脑中的“神经元连接”,参数越多,模型越“聪明”,能处理的任务也更复杂。举个例子:小模型:像一个小学生,能解决简单的数学题,但遇到复杂问题容易卡壳。大模型:像一位大学教授,不仅能解数学题,还能写诗
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>