Numpy - 多维数据数组

numpy包(模块)几乎总是用于Python中的数值计算。这个软件包为Python提供了高性能的向量、矩阵、张量数据类型。它是在C和Fortran中创建的,因此当计算被矢量化(用矩阵和矢量表示操作)时,性能很高。


目录

1.模块的导入:

2.数组创建numpy

2.1根据列表创建numpy.array​

3.使用函数生成数组

3.1arrange

3.2linspace 和 logspace

3.3mgrid

3.4随机数

3.6diag

3.5零和单位矩阵​

4.文件导入和导出

4.1逗号分隔的值(CSV)​

4.2numpy数组的主要文件格式。

4.3numpy数组的其他属性

5.使用数组

5.1编制索引​

5.2选择数组的一部分​

5.3先进的索引方法

5.4从数组中提取数据和创建数组的函数。

5.4.1where

5.4.2diag

5.4.3take

5.4.4choose

​6.线性代数

6.1点积运算​

6.2基础运算​

7.矩阵

7.1矩阵​

8.数据处理​

8.1平均值

8.2标准差和离散度

8.3sum, prod, и trace

8.4多变量数据​

9.改变阵列的形状和大小

10.增加一个新的度量newaxis

11.联合​

12.hstack and vstack​

13.Copy и "deep copy"

14.矩阵的循环​


1.模块的导入:

%matplotlib inline
import matplotlib.pyplot as plt
from numpy import *

2.数组创建numpy

有几种初始化numpy数组的方法,例如:使用Python的list或tuple。使用旨在创建Numpy数组的函数,如arrange、linspace等。从文件中读取数据(例如Python pickle格式)

2.1根据列表创建numpy.array

v = array([1,2,3,4])
v

M = array([[1, 2], [3, 4]])
M

v和M 都是ndarray类型的对象,由numpy模块创建。

type(v), type(M)

v数组和M数组的区别在于它们的尺寸(形式)。我们可以使用ndarray.shape属性来获取大小信息。

v.shape

M.shape

矩阵中元素的数量可以通过属性ndarray.size

M.size

也可以使用numpy方法numpy.shape 和 numpy.size

shape(M)

size(M)

numpy.ndarray 看起来像一个普通的 Python 列表。使用它们而不是Python列表有几个原因。

Python的列表是非常常见的。它们可以包含任何对象。他们是动态类型化的。它们不支持矩阵和诗词作品等数学运算。由于动态类型的原因,在Python中用list实现这种操作并不是很有效。
Numpy数组是静态类型化和同质化的。元素类型是在创建数组时定义的(那么数组数据类型可以改变)。
Numpy数组不是很耗费内存。
得益于静态类型化,数学函数如乘积和numpy数组的和可以在编译语言中实现(使用C和Fortran)。
使用ndarray数组的dtype(数据类型)属性,我们可以看到数组的数据类型。

M.dtype

试图分配一个错误类型(不一样的类型)的值会导致错误。

M[0,0] = "hello"

Numpy - 多维数据数组_第1张图片

创建数组时,可以分别指定数据类型。

M = array([[1, 2], [3, 4]], dtype=complex)
M

通常使用以下dtype值:int、float、complex、bool、object等。

我们也可以用比特来指定大小:int64、int16、float128、complex128。

3.使用函数生成数组

使用python列表来指定大型数组是不切实际的。你可以使用各种Numpy方法。

3.1arrange

x = arange(0, 10, 1) # arguments: start, stop, step

x

x = arange(-1, 1, 0.1)

x

Numpy - 多维数据数组_第2张图片

3.2linspace 和 logspace

使用linspace,区间的两端都被包括在内,参数:(开始,停止,点的数量)

linspace(0, 10, 25)

Numpy - 多维数据数组_第3张图片

logspace(0, 10, 10, base=e)

3.3mgrid

x, y = mgrid[0:5, 0:5]
x
y

Numpy - 多维数据数组_第4张图片Numpy - 多维数据数组_第5张图片

 

3.4随机数

#导入所需模块
from numpy import random
#区间[0,1]内的均匀分布数。
random.rand(5,5)

Numpy - 多维数据数组_第6张图片

#来自于正态分布的随机数
random.randn(5,5)

Numpy - 多维数据数组_第7张图片

3.6diag

#对角矩阵
diag([1,2,3])

#偏移对角矩阵
diag([1,2,3], k=1) 

3.5零和单位矩阵

zeros((3,3))

ones((3,3))

4.文件导入和导出

4.1逗号分隔的值(CSV)

一个非常常见的数据存储格式是CSV,以及类似的格式,如TSV(制表分隔值)。要从这些文件中读取数据,你可以使用以下方法numpy.genfromtxt

data = genfromtxt('stockholm_td_adj.dat')
data.shape

fig, ax = plt.subplots(figsize=(14,4))
ax.plot(data[:,0]+data[:,1]/12.0+data[:,2]/365, data[:,5])
ax.axis('tight')
ax.set_title('Температура в Стокгольме')
ax.set_xlabel('год')
ax.set_ylabel('температура (C)');

Numpy - 多维数据数组_第8张图片

使用numpy.savetxt我们可以将数组保存在CSV中。

M = random.rand(3,3)

M

savetxt("random-matrix.csv", M)
savetxt("random-matrix.csv", M, fmt='%.5f') # fmt 指定格式

4.2numpy数组的主要文件格式。

保存和读取的方法numpy.save 和 numpy.load

save("random-matrix.npy", M)
load("random-matrix.npy")

4.3numpy数组的其他属性

M.itemsize#每个byte中的单元数
M.nbytes#byte数目
M.ndim#单位数,计数

5.使用数组

5.1编制索引

你可以使用方括号和索引来选择数组的元素。

# v是一个只有一个维度的向量,所以一个索引就足以获得元素。
v[0]

# M是一个矩阵(二维数组),所以需要两个索引(行,列)。
M[1,1]

如果我们省略了多维数组中的索引,就会返回一些值(一般情况下,N-1维的数组)。

M

M[1]

M[1,:]#第一行

M[:,1]#第一列

使用索引,你可以为单个数组元素赋值。

M[0,0] = 1
M

也适用于行和列

#也适用于行和列
M[1,:] = 0
M[:,2] = -1
M

5.2选择数组的一部分

你可以使用M[lower:uperior:step]语法来获取一个数组的一部分。

A = array([1,2,3,4,5])
A

A[1:3]

数组的部分是可变的:如果给它们分配新的值,那么从它们提取的数组就会改变原来的数组。

A[1:3] = [-2,-3]

A

我们可以省略M[lower:upper:step]中的部分参数。

A[::]#下限、上限、默认步数

低于零的指数从数组的末端开始计算。

A = array([1,2,3,4,5])
A[-1]#最后一个元素
A[-3:]#最后三个元素

索引分区也适用于多维数组。

A = array([[n+m*10 for n in range(5)] for m in range(5)])

A

Numpy - 多维数据数组_第9张图片

#方阵
A[1:4, 1:4]

#渐进,带有指定间隔数
A[::2, ::2]

5.3先进的索引方法

数组的值可以作为选择项目的索引。

row_indices = [1, 2, 3]
A[row_indices]

col_indices = [1, 2, -1]
A[row_indices, col_indices]

你也可以使用掩码:如果掩码类型为bool,那么根据掩码元素的值与相应的索引,选择该元素(True)或不选择(False)。

B = array([n for n in range(5)])
B

row_mask = array([True, False, True, False, False])
B[row_mask]

row_mask = array([1,0,1,0,0], dtype=bool)
B[row_mask]

这个函数对于根据某些条件从数组中选择元素非常有用。

x = arange(0, 10, 0.5)
x

mask = (5 < x) * (x < 7.5)

mask

x[mask]

5.4从数组中提取数据和创建数组的函数。

5.4.1where

索引掩码可以通过使用以下方法转换为位置索引 where

indices = where(mask)

indices

x[indices]#这个索引相当于x[mask]的索引。

5.4.2diag

使用diag函数还可以提取对角线和子对角线元素。

diag(A)

diag(A,-1)

5.4.3take

类似于上述的索引方法。

v2 = arange(-3,3)
v2

row_indices = [1, 3, 5]
v2[row_indices]

v2.take(row_indices)

但take也可以在列表和其他对象上工作。

take([-3, -2, -1,  0,  1,  2], row_indices)

5.4.4choose

从多个数组中提取数值。

which = [1, 0, 1, 0]
choices = [[-2,-2,-2,-2], [5,5,5,5]]

choose(which, choices)  # 0th elem of 0 array, 1st elem of 1 array, ...


6.线性代数

6.1点积运算

v1 = arange(0, 5)
v1 * 2

v1 + 2

A * 2

Numpy - 多维数据数组_第10张图片

A + 2

Numpy - 多维数据数组_第11张图片

6.2基础运算

A * A

Numpy - 多维数据数组_第12张图片

v1 * v1

A.shape, v1.shape

A * v1

Numpy - 多维数据数组_第13张图片

7.矩阵

7.1矩阵

dot(A, A)

dot(A, v1)

dot(v1, v1)

也可以将数组转换为矩阵的类型。然后再根据矩阵代数的规律进行+、-、*的算术运算。

M = matrix(A)
v = matrix(v1).T#换位
v

Numpy - 多维数据数组_第14张图片

M * M

Numpy - 多维数据数组_第15张图片

M * v

Numpy - 多维数据数组_第16张图片

v.T * v

v + M*v

Numpy - 多维数据数组_第17张图片

8.数据处理

shape(data)

8.1平均值

#温度柱
mean(data[:,3])

过去200年,斯德哥尔摩的平均气温在6.2摄氏度左右。

8.2标准差和离散度

std(data[:,3]), var(data[:,3])

8.3sum, prod, и trace

d = arange(0, 10)
d

#求和
sum(d)

#所有元素的乘积
prod(d+1)
#累计总和
cumsum(d)

#累积乘积
cumprod(d+1)
#和diag(A).sum()一样
trace(A)

8.4多变量数据

m = random.rand(3,3)
m

m.max()

 

#每列最大值 
m.max(axis=0)

#每行最大值 
m.max(axis=1)

9.改变阵列的形状和大小

A

Numpy - 多维数据数组_第18张图片

n, m = A.shape
#或者
n,m=np.shape(A)
B = A.reshape((1,n*m))
B

B[0,0:5] = 5

B

A 

Numpy - 多维数据数组_第19张图片

B = A.flatten()

B

B[0:5] = 10

B

#A没有改变,因为B是A的副本,不是同一个对象的引用。
A

Numpy - 多维数据数组_第20张图片

10.增加一个新的度量newaxis

v = array([1,2,3])
shape(v)

#向量 -> 单列矩阵
v[:, newaxis]

#尺寸
v[:,newaxis].shape

v[newaxis,:].shape

11.联合

b = array([[5, 6]])
a = array([[5, 6]])
concatenate((a, b), axis=0)

concatenate((a, b), axis=1)

12.hstack and vstack

vstack((a,b))

hstack((a,b))

13.Copy и "deep copy"

A = array([[1, 2], [3, 4]])

A

#B等同于A
B = A 
#改变B,将影响A
B[0,0] = 10

B

A

B = copy(A)
#现在改变B将不再影响A
B[0,0] = -5

B

A

14.矩阵的循环

v = array([1,2,3,4])

for element in v:
    print(element)

M = array([[1,2], [3,4]])

for row in M:
    print("row", row)
    
    for element in row:
        print(element)

Numpy - 多维数据数组_第21张图片

通过枚举,可以同时获得元素的值和索引。

for row_idx, row in enumerate(M):
    print("row_idx", row_idx, "row", row)
    
    for col_idx, element in enumerate(row):
        print("col_idx", col_idx, "element", element)
       
        # update the matrix M: square each element
        M[row_idx, col_idx] = element ** 2

Numpy - 多维数据数组_第22张图片

#每个元素现在都是列表
M

你可能感兴趣的:(Python)