创建并返回设置有常用配置字符串的 ExecutorService 的方法。
创建并返回设置有常用配置字符串的 ScheduledExecutorService 的方法。
创建并返回“包装的”ExecutorService 方法,它通过使特定于实现的方法不可访问来禁用重新配置。
创建并返回 ThreadFactory 的方法,它可将新创建的线程设置为已知的状态。
创建并返回非闭包形式的 Callable 的方法,这样可将其用于需要 Callable 的执行方法中。
上述是Executors类在api中的说明,我们可以很清楚的知道Executors其实是一个工厂类,它提供了各种不同参数的线程池给我们使用。
相对来说newCachedThreadPool和newFixedThreadPool 用的较多,这是使用方法:传送门
接着让我们带着问题来看源码,
1.为什么要这么用?
2.使用不当会导致什么样的问题?
3.他们的实现有什么差异?
ThreadPoolExecutor 是线程池的实现类,它继承了AbstractExecutorService,实现了ExecutorService。fixed和cache线程池都是由它实现,区别在于默认参数不同。下面看一下两者的代码。
public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue(),
threadFactory);
}
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue(),
threadFactory);
}
实例化ThreadPoolExecutor类的第三个参数不同的,一个是60,一个是0。这是他们最大的区别。下面就ThreadPoolExecutor类的参数作出说明。
//ThreadPoolExecutor的构造方法
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
/**
corePoolSize - 池中所保存的线程数,包括空闲线程。
maximumPoolSize - 池中允许的最大线程数。
keepAliveTime - 当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。
unit - keepAliveTime 参数的时间单位。
workQueue - 执行前用于保持任务的队列。此队列仅保持由 execute 方法提交的 Runnable 任务。
handler - 由于超出线程范围和队列容量而使执行被阻塞时所使用的处理程序。
*/
核心和最大池大小
当新任务在方法execute(java.lang.Runnable)中提交时,如果运行的线程少于corePoolSize,则创建新线程来处理请求,即使其他辅助线程是空闲的。如果运行的线程多于 corePoolSize 而少于 maximumPoolSize,则仅当队列满时才创建新线程。如果设置的 corePoolSize 和 maximumPoolSize 相同,则创建了固定大小的线程池。如果将 maximumPoolSize 设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。在大多数情况下,核心和最大池大小仅基于构造来设置,不过也可以使用 setCorePoolSize(int) 和 setMaximumPoolSize(int) 进行动态更改。
创建新线程
使用 ThreadFactory 创建新线程。如果没有另外说明,则在同一个 ThreadGroup 中一律使用Executors.defaultThreadFactory()创建线程,并且这些线程具有相同的 NORM_PRIORITY 优先级和非守护进程状态。通过提供不同的 ThreadFactory,可以改变线程的名称、线程组、优先级、守护进程状态,等等。如果从 newThread 返回 null 时 ThreadFactory 未能创建线程,则执行程序将继续运行,但不能执行任何任务。
按需构造
默认情况下,即使核心线程最初只是在新任务到达时才创建和启动的,也可以使用方法 prestartCoreThread() 或 prestartAllCoreThreads() 对其进行动态重写。如果构造带有非空队列的池,则可能希望预先启动线程。
保持活动时间
如果池中当前有多于corePoolSize的线程,则这些多出的线程在空闲时间超过keepAliveTime时将会终止(参见getKeepAliveTime(java.util.concurrent.TimeUnit))。这提供了当池处于非活动状态时减少资源消耗的方法。如果池后来变得更为活动,则可以创建新的线程。也可以使用方法setKeepAliveTime(long, java.util.concurrent.TimeUnit) 动态地更改此参数。使用 Long.MAX_VALUE TimeUnit.NANOSECONDS 的值在关闭前有效地从以前的终止状态禁用空闲线程。默认情况下,保持活动策略只在有多于 corePoolSizeThreads 的线程时应用。但是只要 keepAliveTime 值非 0,allowCoreThreadTimeOut(boolean) 方法也可将此超时策略应用于核心线程。
排队
所有 BlockingQueue 都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互:
如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。
如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。
如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。
钩子 (hook) 方法
此类提供 protected 可重写的 beforeExecute(java.lang.Thread, java.lang.Runnable) 和 afterExecute(java.lang.Runnable, java.lang.Throwable) 方法,这两种方法分别在执行每个任务之前和之后调用。它们可用于操纵执行环境;例如,重新初始化 ThreadLocal、搜集统计信息或添加日志条目。此外,还可以重写方法 terminated() 来执行 Executor 完全终止后需要完成的所有特殊处理。
如果钩子 (hook) 或回调方法抛出异常,则内部辅助线程将依次失败并突然终止。
beforeExecute(Thread t, Runnable r)
在执行给定线程中的给定 Runnable 之前调用的方法.
t - 将运行任务 r 的线程。
r - 将执行的任务。
afterExecute(Runnable r, Throwable t)
基于完成执行给定 Runnable 所调用的方法。
r - 已经完成的 runnable 线程。
t - 导致终止的异常;如果执行正常结束,则为 null。
terminated()
当 Executor 已经终止时调用的方法。
以上钩子方法均实现不执行任何操作,在子类中定制
//任务执行入口,Workder类
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock();
boolean completedAbruptly = true;
try {
//没有任务时结束
while (task != null || (task = getTask()) != null) {
w.lock();
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
//任务执行前调用钩子方法
beforeExecute(wt, task);
Throwable thrown = null;
try {
//执行任务run方法
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
//任务执行后调用钩子方法
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
//内部调用terminated(),其它线程结束入口也会调用terminated方法
processWorkerExit(w, completedAbruptly);
}
}
//从队列中获取任务,如果设置了时间超时时返回null,如果没有设置时间会阻塞
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
boolean timed; // Are workers subject to culling?
for (;;) {
int wc = workerCountOf(c);
timed = allowCoreThreadTimeOut || wc > corePoolSize;
if (wc <= maximumPoolSize && ! (timedOut && timed))
break;
if (compareAndDecrementWorkerCount(c))
return null;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
终止
程序 AND 不再引用的池没有剩余线程会自动 shutdown。如果希望确保回收取消引用的池(即使用户忘记调用 shutdown()),则必须安排未使用的线程最终终止:设置适当保持活动时间,使用0核心线程的下边界和/或设置allowCoreThreadTimeOut(boolean)。
//任务提交
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
//校验线程池参数,添加任务,启动线程
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
final ReentrantLock mainLock = this.mainLock;
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
mainLock.lock();
try {
int c = ctl.get();
int rs = runStateOf(c);
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}